metadata
base_model:
- Qwen/Qwen2-1.5B-Instruct
- Qwen/Qwen2-1.5B-Instruct
tags:
- merge
- mergekit
- lazymergekit
- Qwen/Qwen2-1.5B-Instruct
test1
test1 is a merge of the following models using LazyMergekit:
🧩 Configuration
dtype: bfloat16
merge_method: passthrough
slices:
- sources:
- layer_range: [0, 9]
model: Qwen/Qwen2-1.5B-Instruct
- sources:
- layer_range: [17, 28]
model: Qwen/Qwen2-1.5B-Instruct
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Alex01837178373/test1"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])