swin-tiny-patch4-window7-224-finetuned-woody_130epochs
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4550
- Accuracy: 0.8921
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 130
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6694 | 1.0 | 58 | 0.6370 | 0.6594 |
0.6072 | 2.0 | 116 | 0.5813 | 0.7030 |
0.6048 | 3.0 | 174 | 0.5646 | 0.7030 |
0.5849 | 4.0 | 232 | 0.5778 | 0.6970 |
0.5671 | 5.0 | 290 | 0.5394 | 0.7236 |
0.5575 | 6.0 | 348 | 0.5212 | 0.7382 |
0.568 | 7.0 | 406 | 0.5218 | 0.7358 |
0.5607 | 8.0 | 464 | 0.5183 | 0.7527 |
0.5351 | 9.0 | 522 | 0.5138 | 0.7467 |
0.5459 | 10.0 | 580 | 0.5290 | 0.7394 |
0.5454 | 11.0 | 638 | 0.5212 | 0.7345 |
0.5291 | 12.0 | 696 | 0.5130 | 0.7576 |
0.5378 | 13.0 | 754 | 0.5372 | 0.7503 |
0.5264 | 14.0 | 812 | 0.6089 | 0.6861 |
0.4909 | 15.0 | 870 | 0.4852 | 0.7636 |
0.5591 | 16.0 | 928 | 0.4817 | 0.76 |
0.4966 | 17.0 | 986 | 0.5673 | 0.6933 |
0.4988 | 18.0 | 1044 | 0.5131 | 0.7418 |
0.5339 | 19.0 | 1102 | 0.4998 | 0.7394 |
0.4804 | 20.0 | 1160 | 0.4655 | 0.7733 |
0.503 | 21.0 | 1218 | 0.4554 | 0.7685 |
0.4859 | 22.0 | 1276 | 0.4713 | 0.7770 |
0.504 | 23.0 | 1334 | 0.4545 | 0.7721 |
0.478 | 24.0 | 1392 | 0.4658 | 0.7830 |
0.4759 | 25.0 | 1450 | 0.4365 | 0.8012 |
0.4686 | 26.0 | 1508 | 0.4452 | 0.7855 |
0.4668 | 27.0 | 1566 | 0.4427 | 0.7879 |
0.4615 | 28.0 | 1624 | 0.4439 | 0.7685 |
0.4588 | 29.0 | 1682 | 0.4378 | 0.7830 |
0.4588 | 30.0 | 1740 | 0.4229 | 0.7988 |
0.4296 | 31.0 | 1798 | 0.4188 | 0.7976 |
0.4208 | 32.0 | 1856 | 0.4316 | 0.7891 |
0.4481 | 33.0 | 1914 | 0.4331 | 0.7891 |
0.4253 | 34.0 | 1972 | 0.4524 | 0.7879 |
0.4117 | 35.0 | 2030 | 0.4570 | 0.7952 |
0.4405 | 36.0 | 2088 | 0.4307 | 0.7927 |
0.4154 | 37.0 | 2146 | 0.4257 | 0.8024 |
0.3962 | 38.0 | 2204 | 0.5077 | 0.7818 |
0.414 | 39.0 | 2262 | 0.4602 | 0.8012 |
0.3937 | 40.0 | 2320 | 0.4741 | 0.7770 |
0.4186 | 41.0 | 2378 | 0.4250 | 0.8 |
0.4076 | 42.0 | 2436 | 0.4353 | 0.7988 |
0.3777 | 43.0 | 2494 | 0.4442 | 0.7879 |
0.3968 | 44.0 | 2552 | 0.4525 | 0.7879 |
0.377 | 45.0 | 2610 | 0.4198 | 0.7988 |
0.378 | 46.0 | 2668 | 0.4297 | 0.8097 |
0.3675 | 47.0 | 2726 | 0.4435 | 0.8085 |
0.3562 | 48.0 | 2784 | 0.4477 | 0.7952 |
0.381 | 49.0 | 2842 | 0.4206 | 0.8255 |
0.3603 | 50.0 | 2900 | 0.4136 | 0.8109 |
0.3331 | 51.0 | 2958 | 0.4141 | 0.8230 |
0.3471 | 52.0 | 3016 | 0.4253 | 0.8109 |
0.346 | 53.0 | 3074 | 0.5203 | 0.8048 |
0.3481 | 54.0 | 3132 | 0.4288 | 0.8242 |
0.3411 | 55.0 | 3190 | 0.4416 | 0.8194 |
0.3275 | 56.0 | 3248 | 0.4149 | 0.8291 |
0.3067 | 57.0 | 3306 | 0.4623 | 0.8218 |
0.3166 | 58.0 | 3364 | 0.4432 | 0.8255 |
0.3294 | 59.0 | 3422 | 0.4599 | 0.8267 |
0.3146 | 60.0 | 3480 | 0.4266 | 0.8291 |
0.3091 | 61.0 | 3538 | 0.4318 | 0.8315 |
0.3277 | 62.0 | 3596 | 0.4252 | 0.8242 |
0.296 | 63.0 | 3654 | 0.4332 | 0.8436 |
0.3241 | 64.0 | 3712 | 0.4729 | 0.8194 |
0.3104 | 65.0 | 3770 | 0.4228 | 0.8448 |
0.2878 | 66.0 | 3828 | 0.4173 | 0.8388 |
0.265 | 67.0 | 3886 | 0.4210 | 0.8497 |
0.3011 | 68.0 | 3944 | 0.4276 | 0.8436 |
0.2861 | 69.0 | 4002 | 0.4923 | 0.8315 |
0.2994 | 70.0 | 4060 | 0.4472 | 0.8182 |
0.276 | 71.0 | 4118 | 0.4541 | 0.8315 |
0.2796 | 72.0 | 4176 | 0.4218 | 0.8521 |
0.2727 | 73.0 | 4234 | 0.4053 | 0.8448 |
0.255 | 74.0 | 4292 | 0.4356 | 0.8376 |
0.276 | 75.0 | 4350 | 0.4193 | 0.8436 |
0.261 | 76.0 | 4408 | 0.4484 | 0.8533 |
0.2416 | 77.0 | 4466 | 0.4722 | 0.8194 |
0.2602 | 78.0 | 4524 | 0.4431 | 0.8533 |
0.2591 | 79.0 | 4582 | 0.4269 | 0.8606 |
0.2613 | 80.0 | 4640 | 0.4335 | 0.8485 |
0.2555 | 81.0 | 4698 | 0.4269 | 0.8594 |
0.2832 | 82.0 | 4756 | 0.3968 | 0.8715 |
0.264 | 83.0 | 4814 | 0.4173 | 0.8703 |
0.2462 | 84.0 | 4872 | 0.4150 | 0.8606 |
0.2424 | 85.0 | 4930 | 0.4377 | 0.8630 |
0.2574 | 86.0 | 4988 | 0.4120 | 0.8679 |
0.2273 | 87.0 | 5046 | 0.4393 | 0.8533 |
0.2334 | 88.0 | 5104 | 0.4366 | 0.8630 |
0.2258 | 89.0 | 5162 | 0.4189 | 0.8630 |
0.2153 | 90.0 | 5220 | 0.4474 | 0.8630 |
0.2462 | 91.0 | 5278 | 0.4362 | 0.8642 |
0.2356 | 92.0 | 5336 | 0.4454 | 0.8715 |
0.2019 | 93.0 | 5394 | 0.4413 | 0.88 |
0.209 | 94.0 | 5452 | 0.4410 | 0.8703 |
0.2201 | 95.0 | 5510 | 0.4323 | 0.8691 |
0.2245 | 96.0 | 5568 | 0.4999 | 0.8618 |
0.2178 | 97.0 | 5626 | 0.4612 | 0.8655 |
0.2163 | 98.0 | 5684 | 0.4340 | 0.8703 |
0.2228 | 99.0 | 5742 | 0.4504 | 0.8788 |
0.2151 | 100.0 | 5800 | 0.4602 | 0.8703 |
0.1988 | 101.0 | 5858 | 0.4414 | 0.8812 |
0.2227 | 102.0 | 5916 | 0.4392 | 0.8824 |
0.1772 | 103.0 | 5974 | 0.5069 | 0.8630 |
0.2199 | 104.0 | 6032 | 0.4648 | 0.8667 |
0.1936 | 105.0 | 6090 | 0.4806 | 0.8691 |
0.199 | 106.0 | 6148 | 0.4569 | 0.8764 |
0.2149 | 107.0 | 6206 | 0.4445 | 0.8739 |
0.1917 | 108.0 | 6264 | 0.4444 | 0.8727 |
0.201 | 109.0 | 6322 | 0.4594 | 0.8727 |
0.1938 | 110.0 | 6380 | 0.4564 | 0.8764 |
0.1977 | 111.0 | 6438 | 0.4398 | 0.8739 |
0.1776 | 112.0 | 6496 | 0.4356 | 0.88 |
0.1939 | 113.0 | 6554 | 0.4412 | 0.8848 |
0.178 | 114.0 | 6612 | 0.4373 | 0.88 |
0.1926 | 115.0 | 6670 | 0.4508 | 0.8812 |
0.1979 | 116.0 | 6728 | 0.4477 | 0.8848 |
0.1958 | 117.0 | 6786 | 0.4488 | 0.8897 |
0.189 | 118.0 | 6844 | 0.4553 | 0.8836 |
0.1838 | 119.0 | 6902 | 0.4605 | 0.8848 |
0.1755 | 120.0 | 6960 | 0.4463 | 0.8836 |
0.1958 | 121.0 | 7018 | 0.4474 | 0.8861 |
0.1857 | 122.0 | 7076 | 0.4550 | 0.8921 |
0.1466 | 123.0 | 7134 | 0.4494 | 0.8885 |
0.1751 | 124.0 | 7192 | 0.4560 | 0.8873 |
0.175 | 125.0 | 7250 | 0.4383 | 0.8897 |
0.207 | 126.0 | 7308 | 0.4601 | 0.8873 |
0.1756 | 127.0 | 7366 | 0.4425 | 0.8897 |
0.1695 | 128.0 | 7424 | 0.4533 | 0.8909 |
0.1873 | 129.0 | 7482 | 0.4510 | 0.8897 |
0.1726 | 130.0 | 7540 | 0.4463 | 0.8909 |
Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.