Wav2Vec2-Large-XLSR-53-Maltese

Fine-tuned facebook/wav2vec2-large-xlsr-53 in Maltese using the Common Voice When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torchaudio
from datasets import load_dataset, load_metric
from transformers import (
    Wav2Vec2ForCTC,
    Wav2Vec2Processor,
)
import torch
import re
import sys

model_name = "Akashpb13/xlsr_maltese_wav2vec2"
device = "cuda"
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”\\�\\)\\(\\*)]'

model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
processor = Wav2Vec2Processor.from_pretrained(model_name)

ds = load_dataset("common_voice", "mt", split="test", data_dir="./cv-corpus-6.1-2020-12-11")

resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)

def map_to_array(batch):
    speech, _ = torchaudio.load(batch["path"])
    batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
    batch["sampling_rate"] = resampler.new_freq
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
    return batch

ds = ds.map(map_to_array)

def map_to_pred(batch):
    features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt")
    input_values = features.input_values.to(device)
    attention_mask = features.attention_mask.to(device)
    with torch.no_grad():
        logits = model(input_values, attention_mask=attention_mask).logits
    pred_ids = torch.argmax(logits, dim=-1)
    batch["predicted"] = processor.batch_decode(pred_ids)
    batch["target"] = batch["sentence"]
    return batch

result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys()))

wer = load_metric("wer")
print(wer.compute(predictions=result["predicted"], references=result["target"]))

Test Result: 29.42 %

Downloads last month
17
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Akashpb13/xlsr_maltese_wav2vec2

Evaluation results