Model Description
SQL Generation model which is fine-tuned on the Mistral-7B-Instruct-v0.1. Inspired from https://huggingface.co/kanxxyc/Mistral-7B-SQLTuned
Code
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
peft_model_id = "AhmedSSoliman/Mistral-Instruct-SQL-Generation"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, trust_remote_code=True, return_dict=True, load_in_4bit=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
def predict_SQL(table, question):
pipe = pipeline('text-generation', model = base_model, tokenizer = tokenizer)
prompt = f"[INST] Write SQL query to answer the following question given the database schema. Please wrap your code answer using ```: Schema: {table} Question: {question} [/INST] Here is the SQL query to answer to the question: {question}: ``` "
#prompt = f"### Schema: {table} ### Question: {question} # "
ans = pipe(prompt, max_new_tokens=200)
generatedSql = ans[0]['generated_text'].split('```')[2]
return generatedSql
table = "CREATE TABLE Employee (name VARCHAR, salary INTEGER);"
question = 'Show names for all employees with salary more than the average.'
generatedSql=predict_SQL(table, question)
print(generatedSql)
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for AhmedSSoliman/Mistral-Instruct-SQL-Generation
Base model
mistralai/Mistral-7B-v0.1
Finetuned
mistralai/Mistral-7B-Instruct-v0.1