|
--- |
|
library_name: sklearn |
|
tags: |
|
- sklearn |
|
- skops |
|
- tabular-regression |
|
model_format: skops |
|
model_file: model.skops |
|
widget: |
|
structuredData: |
|
AveBedrms: |
|
- 0.9290780141843972 |
|
- 0.9458483754512635 |
|
- 1.087360594795539 |
|
AveOccup: |
|
- 3.1134751773049647 |
|
- 3.0613718411552346 |
|
- 3.2657992565055762 |
|
AveRooms: |
|
- 6.304964539007092 |
|
- 6.945848375451264 |
|
- 3.8884758364312266 |
|
HouseAge: |
|
- 17.0 |
|
- 15.0 |
|
- 24.0 |
|
Latitude: |
|
- 34.23 |
|
- 36.84 |
|
- 34.04 |
|
Longitude: |
|
- -117.41 |
|
- -119.77 |
|
- -118.3 |
|
MedInc: |
|
- 6.1426 |
|
- 5.3886 |
|
- 1.7109 |
|
Population: |
|
- 439.0 |
|
- 848.0 |
|
- 1757.0 |
|
--- |
|
|
|
# Model description |
|
|
|
Gradient boosting regressor trained on California Housing dataset |
|
|
|
The model is a gradient boosting regressor from sklearn. On top of the standard |
|
features, it contains predictions from a KNN models. These predictions are calculated |
|
out of fold, then added on top of the existing features. These features are really |
|
helpful for decision tree-based models, since those cannot easily learn from geospatial |
|
data. |
|
|
|
## Intended uses & limitations |
|
|
|
This model is meant for demonstration purposes |
|
|
|
## Training Procedure |
|
|
|
### Hyperparameters |
|
|
|
The model is trained with below hyperparameters. |
|
|
|
<details> |
|
<summary> Click to expand </summary> |
|
|
|
| Hyperparameter | Value | |
|
|-----------------------------------------------|--------------------------------------------------------------| |
|
| cv | | |
|
| estimators | [('knn@5', Pipeline(steps=[('select_cols',<br /> ColumnTransformer(transformers=[('long_and_lat', 'passthrough',<br /> ['Longitude', 'Latitude'])])),<br /> ('knn', KNeighborsRegressor())]))] | |
|
| final_estimator__alpha | 0.9 | |
|
| final_estimator__ccp_alpha | 0.0 | |
|
| final_estimator__criterion | friedman_mse | |
|
| final_estimator__init | | |
|
| final_estimator__learning_rate | 0.1 | |
|
| final_estimator__loss | squared_error | |
|
| final_estimator__max_depth | 3 | |
|
| final_estimator__max_features | | |
|
| final_estimator__max_leaf_nodes | | |
|
| final_estimator__min_impurity_decrease | 0.0 | |
|
| final_estimator__min_samples_leaf | 1 | |
|
| final_estimator__min_samples_split | 2 | |
|
| final_estimator__min_weight_fraction_leaf | 0.0 | |
|
| final_estimator__n_estimators | 500 | |
|
| final_estimator__n_iter_no_change | | |
|
| final_estimator__random_state | 0 | |
|
| final_estimator__subsample | 1.0 | |
|
| final_estimator__tol | 0.0001 | |
|
| final_estimator__validation_fraction | 0.1 | |
|
| final_estimator__verbose | 0 | |
|
| final_estimator__warm_start | False | |
|
| final_estimator | GradientBoostingRegressor(n_estimators=500, random_state=0) | |
|
| n_jobs | | |
|
| passthrough | True | |
|
| verbose | 0 | |
|
| knn@5 | Pipeline(steps=[('select_cols',<br /> ColumnTransformer(transformers=[('long_and_lat', 'passthrough',<br /> ['Longitude', 'Latitude'])])),<br /> ('knn', KNeighborsRegressor())]) | |
|
| knn@5__memory | | |
|
| knn@5__steps | [('select_cols', ColumnTransformer(transformers=[('long_and_lat', 'passthrough',<br /> ['Longitude', 'Latitude'])])), ('knn', KNeighborsRegressor())] | |
|
| knn@5__verbose | False | |
|
| knn@5__select_cols | ColumnTransformer(transformers=[('long_and_lat', 'passthrough',<br /> ['Longitude', 'Latitude'])]) | |
|
| knn@5__knn | KNeighborsRegressor() | |
|
| knn@5__select_cols__n_jobs | | |
|
| knn@5__select_cols__remainder | drop | |
|
| knn@5__select_cols__sparse_threshold | 0.3 | |
|
| knn@5__select_cols__transformer_weights | | |
|
| knn@5__select_cols__transformers | [('long_and_lat', 'passthrough', ['Longitude', 'Latitude'])] | |
|
| knn@5__select_cols__verbose | False | |
|
| knn@5__select_cols__verbose_feature_names_out | True | |
|
| knn@5__select_cols__long_and_lat | passthrough | |
|
| knn@5__knn__algorithm | auto | |
|
| knn@5__knn__leaf_size | 30 | |
|
| knn@5__knn__metric | minkowski | |
|
| knn@5__knn__metric_params | | |
|
| knn@5__knn__n_jobs | | |
|
| knn@5__knn__n_neighbors | 5 | |
|
| knn@5__knn__p | 2 | |
|
| knn@5__knn__weights | uniform | |
|
|
|
</details> |
|
|
|
### Model Plot |
|
|
|
The model plot is below. |
|
|
|
<style>#sk-container-id-13 {color: black;background-color: white;}#sk-container-id-13 pre{padding: 0;}#sk-container-id-13 div.sk-toggleable {background-color: white;}#sk-container-id-13 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-13 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-13 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-13 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-13 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-13 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-13 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-13 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-13 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-13 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-13 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-13 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-13 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-13 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-13 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-13 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-13 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-13 div.sk-item {position: relative;z-index: 1;}#sk-container-id-13 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-13 div.sk-item::before, #sk-container-id-13 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-13 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-13 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-13 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-13 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-13 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-13 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-13 div.sk-label-container {text-align: center;}#sk-container-id-13 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-13 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-13" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>StackingRegressor(estimators=[('knn@5',Pipeline(steps=[('select_cols',ColumnTransformer(transformers=[('long_and_lat','passthrough',['Longitude','Latitude'])])),('knn',KNeighborsRegressor())]))],final_estimator=GradientBoostingRegressor(n_estimators=500,random_state=0),passthrough=True)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-41" type="checkbox" ><label for="sk-estimator-id-41" class="sk-toggleable__label sk-toggleable__label-arrow">StackingRegressor</label><div class="sk-toggleable__content"><pre>StackingRegressor(estimators=[('knn@5',Pipeline(steps=[('select_cols',ColumnTransformer(transformers=[('long_and_lat','passthrough',['Longitude','Latitude'])])),('knn',KNeighborsRegressor())]))],final_estimator=GradientBoostingRegressor(n_estimators=500,random_state=0),passthrough=True)</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><label>knn@5</label></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-42" type="checkbox" ><label for="sk-estimator-id-42" class="sk-toggleable__label sk-toggleable__label-arrow">select_cols: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[('long_and_lat', 'passthrough',['Longitude', 'Latitude'])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-43" type="checkbox" ><label for="sk-estimator-id-43" class="sk-toggleable__label sk-toggleable__label-arrow">long_and_lat</label><div class="sk-toggleable__content"><pre>['Longitude', 'Latitude']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-44" type="checkbox" ><label for="sk-estimator-id-44" class="sk-toggleable__label sk-toggleable__label-arrow">passthrough</label><div class="sk-toggleable__content"><pre>passthrough</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-45" type="checkbox" ><label for="sk-estimator-id-45" class="sk-toggleable__label sk-toggleable__label-arrow">KNeighborsRegressor</label><div class="sk-toggleable__content"><pre>KNeighborsRegressor()</pre></div></div></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><label>final_estimator</label></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-46" type="checkbox" ><label for="sk-estimator-id-46" class="sk-toggleable__label sk-toggleable__label-arrow">GradientBoostingRegressor</label><div class="sk-toggleable__content"><pre>GradientBoostingRegressor(n_estimators=500, random_state=0)</pre></div></div></div></div></div></div></div></div></div></div></div></div> |
|
|
|
## Evaluation Results |
|
|
|
Metrics are calculated on the test set |
|
|
|
| Metric | Value | |
|
|-------------------------|--------------| |
|
| Root mean squared error | 44273.5 | |
|
| Mean absolute error | 30079.9 | |
|
| R² | 0.805954 | |
|
|
|
## Dataset description |
|
|
|
California Housing dataset |
|
-------------------------- |
|
|
|
**Data Set Characteristics:** |
|
|
|
:Number of Instances: 20640 |
|
|
|
:Number of Attributes: 8 numeric, predictive attributes and the target |
|
|
|
:Attribute Information: |
|
- MedInc median income in block group |
|
- HouseAge median house age in block group |
|
- AveRooms average number of rooms per household |
|
- AveBedrms average number of bedrooms per household |
|
- Population block group population |
|
- AveOccup average number of household members |
|
- Latitude block group latitude |
|
- Longitude block group longitude |
|
|
|
:Missing Attribute Values: None |
|
|
|
This dataset was obtained from the StatLib repository. |
|
https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html |
|
|
|
The target variable is the median house value for California districts, |
|
expressed in hundreds of thousands of dollars ($100,000). |
|
|
|
This dataset was derived from the 1990 U.S. census, using one row per census |
|
block group. A block group is the smallest geographical unit for which the U.S. |
|
Census Bureau publishes sample data (a block group typically has a population |
|
of 600 to 3,000 people). |
|
|
|
An household is a group of people residing within a home. Since the average |
|
number of rooms and bedrooms in this dataset are provided per household, these |
|
columns may take surpinsingly large values for block groups with few households |
|
and many empty houses, such as vacation resorts. |
|
|
|
It can be downloaded/loaded using the |
|
:func:`sklearn.datasets.fetch_california_housing` function. |
|
|
|
.. topic:: References |
|
|
|
- Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions, |
|
Statistics and Probability Letters, 33 (1997) 291-297 |
|
|
|
### Data distribution |
|
|
|
<details> |
|
<summary> Click to expand </summary> |
|
|
|
![Data distribution](geographic.png) |
|
|
|
</details> |
|
|
|
# How to Get Started with the Model |
|
|
|
Run the code below to load the model |
|
|
|
```python |
|
import json |
|
import pandas as pd |
|
import skops.io as sio |
|
model = sio.load("model.skops") |
|
with open("config.json") as f: |
|
config = json.load(f) |
|
model.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"])) |
|
``` |
|
|
|
# Model Card Authors |
|
|
|
Benjamin Bossan |
|
|
|
# Model Card Contact |
|
|
|
[email protected] |
|
|
|
# Permutation Importances |
|
|
|
![Permutation Importances](permutation-importances.png) |
|
|