Model Card for Model ID
Model Details
Model Description
- Developed by: Agora Research
- Model type: Vision Language Model
- Language(s) (NLP): English/Chinese
- Finetuned from model: Qwen-VL
Model Sources [optional]
- Repository: https://github.com/QwenLM/Qwen-VL
- Paper: https://arxiv.org/pdf/2308.12966.pdf
Uses
import peft
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
from transformers.generation import GenerationConfig
Note: The default behavior now has injection attack prevention off.
tokenizer = AutoTokenizer.from_pretrained("qwen/Qwen-VL",trust_remote_code=True)
model = AutoPeftModelForCausalLM.from_pretrained(
"Qwen-VL-FNCall-qlora/", # path to the output directory
device_map="cuda",
fp16=True,
trust_remote_code=True
).eval()
Specify hyperparameters for generation (generation_config if transformers < 4.32.0)
#model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-VL-Chat", trust_remote_code=True)
# 1st dialogue turn
query = tokenizer.from_list_format([
{'image': 'https://images.rawpixel.com/image_800/cHJpdmF0ZS9sci9pbWFnZXMvd2Vic2l0ZS8yMDIzLTA4L3Jhd3BpeGVsX29mZmljZV8xNV9waG90b19vZl9hX2RvZ19ydW5uaW5nX3dpdGhfb3duZXJfYXRfcGFya19lcF9mM2I3MDQyZC0zNWJlLTRlMTQtOGZhNy1kY2Q2OWQ1YzQzZjlfMi5qcGc.jpg'}, # Either a local path or an url
{'text': "[FUNCTION CALL]"},
])
print("sending model to chat")
response, history = model.chat(tokenizer, query=query, history=None)
print(response)
Print Results
[FUNCTION CALL]
{{
'type': 'object',
'properties': {{
'puppy_colors': {{
'type': 'array',
'description': 'The colors of the puppies in the image.',
'items': {{
'type': 'string',
'enum': ['golden']
}}
}},
'puppy_posture': {{
'type': 'string',
'description': 'The posture of the puppies in the image.',
'enum': ['sitting']
}},
'puppy_expression': {{
'type': 'string',
'description': 'The expression of the puppies in the image.',
'enum': ['smiling']
}},
'puppy_location': {{
'type': 'string',
'description': 'The location of the puppies in the image.',
'enum': ['on a green field with orange flowers']
}},
'puppy_background': {{
'type': 'string',
'description': 'The background of the puppies in the image.',
'enum': ['green field with orange flowers']
}}
}}
}}
[EXPECTED OUTPUT]
{{
'puppy_colors': ['golden'],
'puppy_posture': 'sitting',
'puppy_expression': 'smiling',
'puppy_location': 'on a green field with orange flowers',
'puppy_background': 'green field with orange flowers'
}}
Direct Use
Just send an image and put [FUNCTION CALL] in the text. Can also be used for normal qwenvl inference.
Recommendations
(recommended) transformers >= 4.32.0
How to Get Started with the Model
query = tokenizer.from_list_format([
{'image': 'https://images.rawpixel.com/image_800/cHJpdmF0ZS9sci9pbWFnZXMvd2Vic2l0ZS8yMDIzLTA4L3Jhd3BpeGVsX29mZmljZV8xNV9waG90b19vZl9hX2RvZ19ydW5uaW5nX3dpdGhfb3duZXJfYXRfcGFya19lcF9mM2I3MDQyZC0zNWJlLTRlMTQtOGZhNy1kY2Q2OWQ1YzQzZjlfMi5qcGc.jpg'}, # Either a local path or an url
{'text': "[FUNCTION CALL]"},
])
Training Details
Training Data
https://huggingface.co/datasets/AgoraX/OpenImage-FNCall-50k
Training Procedure
qlora for 1 epoch, 1000 steps
Framework versions
- PEFT 0.7.1
- Downloads last month
- 3
Model tree for AgoraX/Qwen-VL-FNCall-qlora
Base model
Qwen/Qwen-VL-Chat-Int4