File size: 2,066 Bytes
f34490f
148303c
 
 
 
 
 
 
 
f34490f
 
148303c
 
f34490f
148303c
f34490f
148303c
 
 
f34490f
148303c
f34490f
148303c
f34490f
148303c
f34490f
148303c
f34490f
148303c
f34490f
148303c
f34490f
148303c
f34490f
148303c
f34490f
148303c
 
 
 
 
 
 
 
 
 
 
f34490f
148303c
f34490f
148303c
 
 
 
 
 
 
 
 
 
 
 
 
 
f34490f
 
148303c
f34490f
148303c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: microsoft/Phi-3-mini-128k-instruct
model-index:
- name: CodePhi-3-mini-4k-instruct-APPS
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CodePhi-3-mini-4k-instruct-APPS

This model is a fine-tuned version of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7651

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1200

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.8306        | 0.0833 | 100  | 0.8445          |
| 0.6325        | 0.1667 | 200  | 0.8164          |
| 0.6696        | 0.25   | 300  | 0.7934          |
| 0.643         | 0.3333 | 400  | 0.7815          |
| 0.778         | 0.4167 | 500  | 0.7737          |
| 0.7273        | 0.5    | 600  | 0.7696          |
| 0.712         | 0.5833 | 700  | 0.7676          |
| 0.6477        | 0.6667 | 800  | 0.7658          |
| 0.6245        | 0.75   | 900  | 0.7652          |
| 0.6959        | 0.8333 | 1000 | 0.7650          |
| 0.7236        | 0.9167 | 1100 | 0.7650          |
| 0.6774        | 1.0    | 1200 | 0.7651          |


### Framework versions

- PEFT 0.11.0
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1