CodePhi-3-mini-4k-instruct-APPS

This model is a fine-tuned version of microsoft/Phi-3-mini-128k-instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7651

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1200

Training results

Training Loss Epoch Step Validation Loss
0.8306 0.0833 100 0.8445
0.6325 0.1667 200 0.8164
0.6696 0.25 300 0.7934
0.643 0.3333 400 0.7815
0.778 0.4167 500 0.7737
0.7273 0.5 600 0.7696
0.712 0.5833 700 0.7676
0.6477 0.6667 800 0.7658
0.6245 0.75 900 0.7652
0.6959 0.8333 1000 0.7650
0.7236 0.9167 1100 0.7650
0.6774 1.0 1200 0.7651

Framework versions

  • PEFT 0.11.0
  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for AdnanRiaz107/CodePhi-3-mini-4k-instruct-APPS

Adapter
(202)
this model

Dataset used to train AdnanRiaz107/CodePhi-3-mini-4k-instruct-APPS