Adapting's picture
Create README.md
49af15e
Fine-tuned [Bert-Base-Chinese](https://huggingface.co/bert-base-chinese) for NER task on [Adapting/chinese_biomedical_NER_dataset](https://huggingface.co/datasets/Adapting/chinese_biomedical_NER_dataset)
# Usage
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("Adapting/bert-base-chinese-finetuned-NER-biomedical")
model = AutoModelForTokenClassification.from_pretrained("Adapting/bert-base-chinese-finetuned-NER-biomedical",revision='7f63e3d18b1dc3cc23041a89e77be21860704d2e')
from transformers import pipeline
nlp = pipeline('ner',model=model,tokenizer = tokenizer)
tag_set = [
'B_手术',
'I_疾病和诊断',
'B_症状',
'I_解剖部位',
'I_药物',
'B_影像检查',
'B_药物',
'B_疾病和诊断',
'I_影像检查',
'I_手术',
'B_解剖部位',
'O',
'B_实验室检验',
'I_症状',
'I_实验室检验'
]
tag2id = lambda tag: tag_set.index(tag)
id2tag = lambda id: tag_set[id]
def readable_result(result):
results_in_word = []
j = 0
while j < len(result):
i = result[j]
entity = id2tag(int(i['entity'][i['entity'].index('_')+1:]))
token = i['word']
if entity.startswith('B'):
entity_name = entity[entity.index('_')+1:]
word = token
j = j+1
while j<len(result):
next = result[j]
next_ent = id2tag(int(next['entity'][next['entity'].index('_')+1:]))
next_token = next['word']
if next_ent.startswith('I') and next_ent[next_ent.index('_')+1:] == entity_name:
word += next_token
j += 1
if j >= len(result):
results_in_word.append((entity_name,word))
else:
results_in_word.append((entity_name,word))
break
else:
j += 1
return results_in_word
print(readable_result(nlp('淋球菌性尿道炎会引起头痛')))
'''
[('疾病和诊断', '淋球菌性尿道炎'), ('症状', '头痛')]
'''
```