Orpo-Llama-3.2-1B-40k
AdamLucek/Orpo-Llama-3.2-1B-40k is an ORPO fine tuned version of meta-llama/Llama-3.2-1B on 1 epoch of mlabonne/orpo-dpo-mix-40k.
Trained for 11 hours on an A100 GPU with this training script
For full model details, refer to the base model page meta-llama/Llama-3.2-1B
Evaluations
In comparsion to AdamLucek/Orpo-Llama-3.2-1B-15k using lm-evaluation-harness.
Benchmark | 15k Accuracy | 15k Normalized | 40k Accuracy | 40k Normalized | Notes |
---|---|---|---|---|---|
AGIEval | 22.14% | 21.01% | 23.57% | 23.26% | 0-Shot Average across multiple reasoning tasks |
GPT4ALL | 51.15% | 54.38% | 51.63% | 55.00% | 0-Shot Average across all categories |
TruthfulQA | 42.79% | N/A | 42.14% | N/A | MC2 accuracy |
MMLU | 31.22% | N/A | 31.01% | N/A | 5-Shot Average across all categories |
Winogrande | 61.72% | N/A | 61.12% | N/A | 0-shot evaluation |
ARC Challenge | 32.94% | 36.01% | 33.36% | 37.63% | 0-shot evaluation |
ARC Easy | 64.52% | 60.40% | 65.91% | 60.90% | 0-shot evaluation |
BoolQ | 50.24% | N/A | 52.29% | N/A | 0-shot evaluation |
PIQA | 75.46% | 74.37% | 75.63% | 75.19% | 0-shot evaluation |
HellaSwag | 48.56% | 64.71% | 48.46% | 64.50% | 0-shot evaluation |
Using this Model
from transformers import AutoTokenizer
import transformers
import torch
# Load Model and Pipeline
model = "AdamLucek/Orpo-Llama-3.2-1B-40k"
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
# Load Tokenizer
tokenizer = AutoTokenizer.from_pretrained(model)
# Generate Message
messages = [{"role": "user", "content": "What is a language model?"}]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=1024, do_sample=True, temperature=0.3, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Training Statistics
OpenLLM Leaderboard Metrics
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | ||
---|---|---|---|---|---|---|---|---|
leaderboard | N/A | |||||||
- leaderboard_bbh | N/A | 0.3290 | ||||||
- leaderboard_bbh_boolean_expressions | 1 | none | 3 | acc_norm | ↑ | 0.6840 | ± | 0.0295 |
- leaderboard_bbh_causal_judgement | 1 | none | 3 | acc_norm | ↑ | 0.5134 | ± | 0.0366 |
- leaderboard_bbh_date_understanding | 1 | none | 3 | acc_norm | ↑ | 0.1920 | ± | 0.0250 |
- leaderboard_bbh_disambiguation_qa | 1 | none | 3 | acc_norm | ↑ | 0.3880 | ± | 0.0309 |
- leaderboard_bbh_formal_fallacies | 1 | none | 3 | acc_norm | ↑ | 0.4680 | ± | 0.0316 |
- leaderboard_bbh_geometric_shapes | 1 | none | 3 | acc_norm | ↑ | 0.0000 | ± | 0 |
- leaderboard_bbh_hyperbaton | 1 | none | 3 | acc_norm | ↑ | 0.4840 | ± | 0.0317 |
- leaderboard_bbh_logical_deduction_five_objects | 1 | none | 3 | acc_norm | ↑ | 0.2000 | ± | 0.0253 |
- leaderboard_bbh_logical_deduction_seven_objects | 1 | none | 3 | acc_norm | ↑ | 0.1360 | ± | 0.0217 |
- leaderboard_bbh_logical_deduction_three_objects | 1 | none | 3 | acc_norm | ↑ | 0.3440 | ± | 0.0301 |
- leaderboard_bbh_movie_recommendation | 1 | none | 3 | acc_norm | ↑ | 0.2280 | ± | 0.0266 |
- leaderboard_bbh_navigate | 1 | none | 3 | acc_norm | ↑ | 0.4200 | ± | 0.0313 |
- leaderboard_bbh_object_counting | 1 | none | 3 | acc_norm | ↑ | 0.3880 | ± | 0.0309 |
- leaderboard_bbh_penguins_in_a_table | 1 | none | 3 | acc_norm | ↑ | 0.1575 | ± | 0.0303 |
- leaderboard_bbh_reasoning_about_colored_objects | 1 | none | 3 | acc_norm | ↑ | 0.1280 | ± | 0.0212 |
- leaderboard_bbh_ruin_names | 1 | none | 3 | acc_norm | ↑ | 0.2000 | ± | 0.0253 |
- leaderboard_bbh_salient_translation_error_detection | 1 | none | 3 | acc_norm | ↑ | 0.2280 | ± | 0.0266 |
- leaderboard_bbh_snarks | 1 | none | 3 | acc_norm | ↑ | 0.5393 | ± | 0.0375 |
- leaderboard_bbh_sports_understanding | 1 | none | 3 | acc_norm | ↑ | 0.5240 | ± | 0.0316 |
- leaderboard_bbh_temporal_sequences | 1 | none | 3 | acc_norm | ↑ | 0.2000 | ± | 0.0253 |
- leaderboard_bbh_tracking_shuffled_objects_five_objects | 1 | none | 3 | acc_norm | ↑ | 0.1640 | ± | 0.0235 |
- leaderboard_bbh_tracking_shuffled_objects_seven_objects | 1 | none | 3 | acc_norm | ↑ | 0.1400 | ± | 0.0220 |
- leaderboard_bbh_tracking_shuffled_objects_three_objects | 1 | none | 3 | acc_norm | ↑ | 0.3520 | ± | 0.0303 |
- leaderboard_bbh_web_of_lies | 1 | none | 3 | acc_norm | ↑ | 0.4880 | ± | 0.0317 |
- leaderboard_gpqa | N/A | 0.2482 | ||||||
- leaderboard_gpqa_diamond | 1 | none | 0 | acc_norm | ↑ | 0.2576 | ± | 0.0312 |
- leaderboard_gpqa_extended | 1 | none | 0 | acc_norm | ↑ | 0.2436 | ± | 0.0184 |
- leaderboard_gpqa_main | 1 | none | 0 | acc_norm | ↑ | 0.2433 | ± | 0.0203 |
- leaderboard_ifeval | 3 | none | 0 | inst_level_loose_acc | ↑ | 0.2962 | ± | N/A |
none | 0 | inst_level_strict_acc | ↑ | 0.2842 | ± | N/A | ||
none | 0 | prompt_level_loose_acc | ↑ | 0.1516 | ± | 0.0154 | ||
none | 0 | prompt_level_strict_acc | ↑ | 0.1386 | ± | 0.0149 | ||
- leaderboard_math_hard | N/A | |||||||
- leaderboard_math_algebra_hard | 2 | none | 4 | exact_match | ↑ | 0.0000 | ± | 0 |
- leaderboard_math_counting_and_prob_hard | 2 | none | 4 | exact_match | ↑ | 0.0000 | ± | 0 |
- leaderboard_math_geometry_hard | 2 | none | 4 | exact_match | ↑ | 0.0000 | ± | 0 |
- leaderboard_math_intermediate_algebra_hard | 2 | none | 4 | exact_match | ↑ | 0.0000 | ± | 0 |
- leaderboard_math_num_theory_hard | 2 | none | 4 | exact_match | ↑ | 0.0000 | ± | 0 |
- leaderboard_math_prealgebra_hard | 2 | none | 4 | exact_match | ↑ | 0.0000 | ± | 0 |
- leaderboard_math_precalculus_hard | 2 | none | 4 | exact_match | ↑ | 0.0000 | ± | 0 |
- leaderboard_mmlu_pro | 0.1 | none | 5 | acc | ↑ | 0.1222 | ± | 0.0030 |
- leaderboard_musr | N/A | avg acc_norm | 0.3433 | |||||
- leaderboard_musr_murder_mysteries | 1 | none | 0 | acc_norm | ↑ | 0.5120 | ± | 0.0317 |
- leaderboard_musr_object_placements | 1 | none | 0 | acc_norm | ↑ | 0.2500 | ± | 0.0271 |
- leaderboard_musr_team_allocation | 1 | none | 0 | acc_norm | ↑ | 0.2680 | ± | 0.0281 |
- Downloads last month
- 236
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.