ft-google-gemma-2b-it-qlora

This model is a fine-tuned version of google/gemma-2b-it on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.7958

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • gradient_accumulation_steps: 10
  • total_train_batch_size: 100
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.0077 100.0 100 2.3782
0.0005 200.0 200 2.9807
0.0004 300.0 300 3.1002
0.0004 400.0 400 3.1932
0.0004 500.0 500 3.2895
0.0004 600.0 600 3.3658
0.0003 700.0 700 3.3978
0.0004 800.0 800 3.4260
0.0004 900.0 900 3.5341
0.0003 1000.0 1000 3.5190
0.0004 1100.0 1100 3.5536
0.0003 1200.0 1200 3.5967
0.0003 1300.0 1300 3.6020
0.0004 1400.0 1400 3.6300
0.0004 1500.0 1500 3.6133
0.0003 1600.0 1600 3.7128
0.0003 1700.0 1700 3.7430
0.0003 1800.0 1800 3.7682
0.0003 1900.0 1900 3.7548
0.0003 2000.0 2000 3.7958

Framework versions

  • PEFT 0.9.0
  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ALBADDAWI/ft-google-gemma-2b-it-qlora

Base model

google/gemma-2b-it
Adapter
(550)
this model