MARTINI_enrich_BERTopic_eatitgoys

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_eatitgoys")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 3
  • Number of training documents: 150
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 catfish - sunscreens - omega - carotenoids - dioxin 32 -1_catfish_sunscreens_omega_carotenoids
0 microplastics - fluoride - aspartame - sodium - hydrogenated 18 0_microplastics_fluoride_aspartame_sodium
1 vaccine - adjuvents - injected - platelet - inactivated 100 1_vaccine_adjuvents_injected_platelet

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.