MARTINI_enrich_BERTopic_diedsuddenlyworldwide

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_diedsuddenlyworldwide")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 7
  • Number of training documents: 680
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 diagnosed - mum - stroke - ambulance - sepsis 25 -1_diagnosed_mum_stroke_ambulance
0 vaccinated - pfizer - injection - myocarditis - nattokinase 321 0_vaccinated_pfizer_injection_myocarditis
1 russell - cancer - aged - jenna - 65 147 1_russell_cancer_aged_jenna
2 paramedics - collapsed - tillman - schoolboy - stadium 69 2_paramedics_collapsed_tillman_schoolboy
3 grief - unexpectedly - matt - yesterday - nephew 52 3_grief_unexpectedly_matt_yesterday
4 godhra - igatpuri - pandey - jamnagar - arvind 37 4_godhra_igatpuri_pandey_jamnagar
5 paramedics - sheriff - mcdaniel - debra - dallas 29 5_paramedics_sheriff_mcdaniel_debra

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12
Downloads last month
4
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.