MARTINI_enrich_BERTopic_GoodLionNews
This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
Usage
To use this model, please install BERTopic:
pip install -U bertopic
You can use the model as follows:
from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_GoodLionNews")
topic_model.get_topic_info()
Topic overview
- Number of topics: 28
- Number of training documents: 3150
Click here for an overview of all topics.
Topic ID | Topic Keywords | Topic Frequency | Label |
---|---|---|---|
-1 | fauci - redpills - full - podcast - pervywood | 20 | -1_fauci_redpills_full_podcast |
0 | lies - phildo - sued - followers - idiot | 1439 | 0_lies_phildo_sued_followers |
1 | netflix - youtube - bitchute - lion - great | 302 | 1_netflix_youtube_bitchute_lion |
2 | xrp - redpills - netflix - conspiracy - telegram | 199 | 2_xrp_redpills_netflix_conspiracy |
3 | mariupol - zelensky - russians - kazakhstan - sanctions | 142 | 3_mariupol_zelensky_russians_kazakhstan |
4 | trumps - biden - ballots - cnn - mccarthy | 85 | 4_trumps_biden_ballots_cnn |
5 | epstein - tucker - liondisclosure1 - headlines - trafficking | 81 | 5_epstein_tucker_liondisclosure1_headlines |
6 | ariibrand - detox - autistic - oils - soni | 74 | 6_ariibrand_detox_autistic_oils |
7 | patriot - discount - episodes - july - mugclub | 74 | 7_patriot_discount_episodes_july |
8 | redpill - netflix - documentary - uncover - bolshevik | 73 | 8_redpill_netflix_documentary_uncover |
9 | pill - budweiser - risen - happydays - unapologetically | 59 | 9_pill_budweiser_risen_happydays |
10 | arrested - prisoners - nicolas - patriots - january | 58 | 10_arrested_prisoners_nicolas_patriots |
11 | lion - good - streaming - exclusives - audiobooks | 50 | 11_lion_good_streaming_exclusives |
12 | migrants - assaulted - prostitutes - lybia - belfast | 46 | 12_migrants_assaulted_prostitutes_lybia |
13 | thetruthseekerschannel - greatest - show - lion - nashville | 40 | 13_thetruthseekerschannel_greatest_show_lion |
14 | sctransformyourhealth - website - doctor - plandemic - vein | 40 | 14_sctransformyourhealth_website_doctor_plandemic |
15 | murdered - michael - murdoch - winehouse - naked | 39 | 15_murdered_michael_murdoch_winehouse |
16 | redpill - netflix - website - links - discover | 38 | 16_redpill_netflix_website_links |
17 | tartarians - empire - cherokee - mongol - egypt | 34 | 17_tartarians_empire_cherokee_mongol |
18 | kubrick - moon - nasa - landings - 1969 | 33 | 18_kubrick_moon_nasa_landings |
19 | terrorists - riots - gendarmerie - marseille - belgium | 32 | 19_terrorists_riots_gendarmerie_marseille |
20 | pedophiles - lgbtq - traffickers - arrested - audrey | 32 | 20_pedophiles_lgbtq_traffickers_arrested |
21 | zionists - israel - netanyahu - mossad - gaza | 31 | 21_zionists_israel_netanyahu_mossad |
22 | tartaria - liondisclosure - episodes - vip - discounts | 30 | 22_tartaria_liondisclosure_episodes_vip |
23 | pervywood - hollywood - creepiest - oprah2 - figureheads | 28 | 23_pervywood_hollywood_creepiest_oprah2 |
24 | trudeau - ontario - trucker - convoys - freedom | 26 | 24_trudeau_ontario_trucker_convoys |
25 | footballer - panthers - died - collapses - flu | 25 | 25_footballer_panthers_died_collapses |
26 | vaccine - luciferase - detected - pzifer - syncytial | 20 | 26_vaccine_luciferase_detected_pzifer |
Training hyperparameters
- calculate_probabilities: True
- language: None
- low_memory: False
- min_topic_size: 10
- n_gram_range: (1, 1)
- nr_topics: None
- seed_topic_list: None
- top_n_words: 10
- verbose: False
- zeroshot_min_similarity: 0.7
- zeroshot_topic_list: None
Framework versions
- Numpy: 1.26.4
- HDBSCAN: 0.8.40
- UMAP: 0.5.7
- Pandas: 2.2.3
- Scikit-Learn: 1.5.2
- Sentence-transformers: 3.3.1
- Transformers: 4.46.3
- Numba: 0.60.0
- Plotly: 5.24.1
- Python: 3.10.12
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.