ChemVLM-8B / README.md
Duke-de-Artois's picture
Update README.md
7be3e29 verified
|
raw
history blame
4.67 kB
metadata
pipeline_tag: text-generation

8b version of our ChemVLM

Quick start as below(transformers>=4.37.0 is needed)

from transformers import AutoTokenizer, AutoModelforCasualLM
import torch
import torchvision.transforms as T
import transformers
from torchvision.transforms.functional import InterpolationMode


IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)


def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio


def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images


def load_image(image_file, input_size=448, max_num=6):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

tokenizer = AutoTokenizer.from_pretrained('AI4Chem/ChemVLM-8B', trust_remote_code=True)

query = "Please describe the molecule in the image."
image_path = "your image path"
pixel_values = load_image(image_path, max_num=6).to(torch.bfloat16).cuda()


model = AutoModelForCausalLM.from_pretrained(
    "AI4Chem/ChemVLM-8B",
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True
).to(device).eval().cuda()

gen_kwargs = {"max_length": 1000, "do_sample": True, "temperature": 0.7, "top_p": 0.9}

response = model.chat(tokenizer, pixel_values, query, gen_kwargs)

Citation

arxiv.org/abs/2408.07246

@misc{li2024seeingunderstandingbridgingvision,
      title={Seeing and Understanding: Bridging Vision with Chemical Knowledge Via ChemVLM}, 
      author={Junxian Li and Di Zhang and Xunzhi Wang and Zeying Hao and Jingdi Lei and Qian Tan and Cai Zhou and Wei Liu and Weiyun Wang and Zhe Chen and Wenhai Wang and Wei Li and Shufei Zhang and Mao Su and Wanli Ouyang and Yuqiang Li and Dongzhan Zhou},
      year={2024},
      eprint={2408.07246},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2408.07246}, 
}