Model Card for Model ID

readme coming soon

Model Details

Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: 4n3mone (YongSang Yoo)
  • Model type: chatglm
  • Language(s) (NLP): Korean
  • License: glm-4
  • Finetuned from model [optional]: THUDM/glm-4-9b-chat

Model Sources [optional]

  • Repository: THUDM/glm-4-9b-chat
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

How to Get Started with the Model

Use the code below to get started with the model.

from transformers import AutoTokenizer
from vllm import LLM, SamplingParams


# GLM-4-9B-Chat
# If you encounter OOM (Out of Memory) issues, it is recommended to reduce max_model_len or increase tp_size.
max_model_len, tp_size = 131072, 1
model_name = "4n3mone/glm-4-ko-9b-chat"
prompt = [{"role": "user", "content": "피카츄랑 아구몬 중에서 누가 더 귀여워?"}]

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
llm = LLM(
    model=model_name,
    tensor_parallel_size=tp_size,
    max_model_len=max_model_len,
    trust_remote_code=True,
    enforce_eager=True,
    # If you encounter OOM (Out of Memory) issues, it is recommended to enable the following parameters.
    # enable_chunked_prefill=True,
    # max_num_batched_tokens=8192
)
stop_token_ids = [151329, 151336, 151338]
sampling_params = SamplingParams(temperature=0.95, max_tokens=1024, stop_token_ids=stop_token_ids)

inputs = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
outputs = llm.generate(prompts=inputs, sampling_params=sampling_params)

print(outputs[0].outputs[0].text)

model.generate(prompt)

logicor benchmark(1-shot)

Category Single turn Multi turn
추론(Reasoning) 6.00 5.57
수학(Math) 5.71 3.00
코딩(Coding) 6.00 5.71
이해(Understanding) 7.71 8.71
글쓰기(Writing) 8.86 7.57
문법(Grammar) 2.86 3.86
Category Score
Single turn 6.19
Multi turn 5.74
Overall 5.96

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Downloads last month
13
Safetensors
Model size
9.4B params
Tensor type
BF16
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.