Model card for vit_giant_patch14_reg4_224.h-optimus-v0

Model Details

Model Usage

Image Embeddings

from PIL import Image
import torch
import timm

# load model from the hub
model = timm.create_model(
  model_name="hf-hub:1aurent/vit_giant_patch14_reg4_224.h-optimus-v0",
  pretrained=True,
).eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

img = Image.open(...)
data = transforms(img).unsqueeze(0) # input is a (batch_size, num_channels, img_size, img_size) shaped tensor
output = model(data)  # output is a (batch_size, num_features) shaped tensor

Citation

@software{hoptimus0,
  title  = {H-optimus-0},
  author = {Saillard, Charlie and Jenatton, Rodolphe and Llinares-López, Felipe and Mariet, Zelda and Cahané, David and Durand, Eric and Vert, Jean-Philippe},
  url    = {https://github.com/bioptimus/releases/tree/main/models/h-optimus/v0},
  year   = {2024},
}
Downloads last month
4
Safetensors
Model size
1.13B params
Tensor type
F32
·
Inference Examples
Inference API (serverless) does not yet support timm models for this pipeline type.