See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: katuni4ka/tiny-random-qwen1.5-moe
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- d08bfdbe2aeae187_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/d08bfdbe2aeae187_train_data.json
type:
field_instruction: instruction
field_output: response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: 0x1202/faca9496-9018-45a1-8ff1-0d4416fc348f
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/d08bfdbe2aeae187_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: e1161db9-fe84-4adc-9cbc-05d0294da594
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: e1161db9-fe84-4adc-9cbc-05d0294da594
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
faca9496-9018-45a1-8ff1-0d4416fc348f
This model is a fine-tuned version of katuni4ka/tiny-random-qwen1.5-moe on the None dataset. It achieves the following results on the evaluation set:
- Loss: 11.8123
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 200
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
11.9355 | 0.0007 | 1 | 11.9383 |
11.845 | 0.0338 | 50 | 11.8563 |
11.8302 | 0.0676 | 100 | 11.8322 |
11.808 | 0.1015 | 150 | 11.8151 |
11.8214 | 0.1353 | 200 | 11.8123 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for 0x1202/faca9496-9018-45a1-8ff1-0d4416fc348f
Base model
katuni4ka/tiny-random-qwen1.5-moe