--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:63 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: keepitreal/vietnamese-sbert widget: - source_sentence: Samsung Galaxy S22 Ultra sentences: - Điện thoại camera 108MP - Điện thoại RAM 12GB - Điện thoại có zoom quang học 10x - source_sentence: Google Pixel 8 Pro sentences: - Điện thoại có jack cắm tai nghe 3.5mm - Điện thoại có bộ nhớ trong 256GB - Điện thoại chụp ảnh đẹp - source_sentence: Google Pixel 8 sentences: - Điện thoại màn hình 120Hz - Điện thoại giá rẻ - Điện thoại Android mới nhất - source_sentence: JBL Reflect Flow Pro sentences: - iPhone mới nhất - Điện thoại màn hình cong - Điện thoại có loa Harman Kardon - source_sentence: Asus ROG Phone 7 sentences: - Điện thoại có bút - Điện thoại chơi game - Điện thoại có đèn flash kép pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 model-index: - name: SentenceTransformer based on keepitreal/vietnamese-sbert results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.0 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.2857142857142857 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.2857142857142857 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5714285714285714 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.0 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.09523809523809523 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.05714285714285715 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.05714285714285715 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.0 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.2857142857142857 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.2857142857142857 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5714285714285714 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.25679948860544627 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.1598639455782313 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.17696777071484332 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.0 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.42857142857142855 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.5714285714285714 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7142857142857143 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.0 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.14285714285714285 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1142857142857143 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07142857142857142 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.0 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.42857142857142855 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5714285714285714 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7142857142857143 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.3358736991627618 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.21564625850340136 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.22075481533609612 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.0 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.0 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.2857142857142857 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5714285714285714 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.0 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.0 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.05714285714285715 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.05714285714285715 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.0 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.0 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.2857142857142857 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5714285714285714 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.22155623379830594 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.11564625850340135 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.13073998125841443 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.0 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.14285714285714285 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.2857142857142857 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.42857142857142855 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.0 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.047619047619047616 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.05714285714285715 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.042857142857142864 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.0 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.14285714285714285 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.2857142857142857 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.42857142857142855 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.18057284162953233 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.10374149659863945 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.11943368484517551 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.14285714285714285 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.2857142857142857 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.2857142857142857 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5714285714285714 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.14285714285714285 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.09523809523809523 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.05714285714285715 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.05714285714285715 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.14285714285714285 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.2857142857142857 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.2857142857142857 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5714285714285714 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.32106066086016677 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.24801587301587302 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2591176744402551 name: Cosine Map@100 --- # SentenceTransformer based on keepitreal/vietnamese-sbert This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [keepitreal/vietnamese-sbert](https://huggingface.co/keepitreal/vietnamese-sbert) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [keepitreal/vietnamese-sbert](https://huggingface.co/keepitreal/vietnamese-sbert) - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("zxcvo/phone-search-model") # Run inference sentences = [ 'Asus ROG Phone 7', 'Điện thoại chơi game', 'Điện thoại có đèn flash kép', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 | |:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------| | cosine_accuracy@1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | | cosine_accuracy@3 | 0.2857 | 0.4286 | 0.0 | 0.1429 | 0.2857 | | cosine_accuracy@5 | 0.2857 | 0.5714 | 0.2857 | 0.2857 | 0.2857 | | cosine_accuracy@10 | 0.5714 | 0.7143 | 0.5714 | 0.4286 | 0.5714 | | cosine_precision@1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | | cosine_precision@3 | 0.0952 | 0.1429 | 0.0 | 0.0476 | 0.0952 | | cosine_precision@5 | 0.0571 | 0.1143 | 0.0571 | 0.0571 | 0.0571 | | cosine_precision@10 | 0.0571 | 0.0714 | 0.0571 | 0.0429 | 0.0571 | | cosine_recall@1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | | cosine_recall@3 | 0.2857 | 0.4286 | 0.0 | 0.1429 | 0.2857 | | cosine_recall@5 | 0.2857 | 0.5714 | 0.2857 | 0.2857 | 0.2857 | | cosine_recall@10 | 0.5714 | 0.7143 | 0.5714 | 0.4286 | 0.5714 | | **cosine_ndcg@10** | **0.2568** | **0.3359** | **0.2216** | **0.1806** | **0.3211** | | cosine_mrr@10 | 0.1599 | 0.2156 | 0.1156 | 0.1037 | 0.248 | | cosine_map@100 | 0.177 | 0.2208 | 0.1307 | 0.1194 | 0.2591 | ## Training Details ### Training Dataset #### json * Dataset: json * Size: 63 training samples * Columns: positive and anchor * Approximate statistics based on the first 63 samples: | | positive | anchor | |:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | positive | anchor | |:-----------------------------------------------------------|:-----------------------------------------| | Google Pixel 8 | Điện thoại Android mới nhất | | Samsung Galaxy S22 Ultra | Điện thoại có sạc không dây | | Samsung Galaxy Note 20 Ultra đi kèm bút S Pen | Điện thoại có bút | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 32 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 4 - `bf16`: True - `load_best_model_at_end`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | |:-------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| | **1.0** | **1** | **0.3188** | **0.3971** | **0.3073** | **0.1945** | **0.2442** | | 2.0 | 2 | 0.3209 | 0.3886 | 0.2545 | 0.1838 | 0.3194 | | 3.0 | 3 | 0.2542 | 0.3359 | 0.2391 | 0.1838 | 0.3211 | | 4.0 | 4 | 0.2568 | 0.3359 | 0.2216 | 0.1806 | 0.3211 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.11.0 - Sentence Transformers: 3.3.1 - Transformers: 4.41.2 - PyTorch: 2.5.1+cu124 - Accelerate: 1.2.1 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```