---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:63
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: keepitreal/vietnamese-sbert
widget:
- source_sentence: Samsung Galaxy S22 Ultra
sentences:
- Điện thoại camera 108MP
- Điện thoại RAM 12GB
- Điện thoại có zoom quang học 10x
- source_sentence: Google Pixel 8 Pro
sentences:
- Điện thoại có jack cắm tai nghe 3.5mm
- Điện thoại có bộ nhớ trong 256GB
- Điện thoại chụp ảnh đẹp
- source_sentence: Google Pixel 8
sentences:
- Điện thoại màn hình 120Hz
- Điện thoại giá rẻ
- Điện thoại Android mới nhất
- source_sentence: JBL Reflect Flow Pro
sentences:
- iPhone mới nhất
- Điện thoại màn hình cong
- Điện thoại có loa Harman Kardon
- source_sentence: Asus ROG Phone 7
sentences:
- Điện thoại có bút
- Điện thoại chơi game
- Điện thoại có đèn flash kép
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on keepitreal/vietnamese-sbert
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2857142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.2857142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5714285714285714
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.09523809523809523
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.05714285714285715
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05714285714285715
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2857142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.2857142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5714285714285714
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.25679948860544627
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.1598639455782313
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.17696777071484332
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.42857142857142855
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5714285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7142857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.14285714285714285
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1142857142857143
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07142857142857142
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.42857142857142855
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5714285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7142857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3358736991627618
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.21564625850340136
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.22075481533609612
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.2857142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5714285714285714
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.05714285714285715
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05714285714285715
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.2857142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5714285714285714
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.22155623379830594
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.11564625850340135
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.13073998125841443
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.14285714285714285
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.2857142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.42857142857142855
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.047619047619047616
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.05714285714285715
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.042857142857142864
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.14285714285714285
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.2857142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.42857142857142855
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.18057284162953233
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.10374149659863945
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.11943368484517551
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.14285714285714285
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2857142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.2857142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5714285714285714
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.14285714285714285
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.09523809523809523
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.05714285714285715
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05714285714285715
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.14285714285714285
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2857142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.2857142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5714285714285714
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.32106066086016677
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.24801587301587302
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2591176744402551
name: Cosine Map@100
---
# SentenceTransformer based on keepitreal/vietnamese-sbert
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [keepitreal/vietnamese-sbert](https://huggingface.co/keepitreal/vietnamese-sbert) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [keepitreal/vietnamese-sbert](https://huggingface.co/keepitreal/vietnamese-sbert)
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("zxcvo/phone-search-model")
# Run inference
sentences = [
'Asus ROG Phone 7',
'Điện thoại chơi game',
'Điện thoại có đèn flash kép',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 |
| cosine_accuracy@3 | 0.2857 | 0.4286 | 0.0 | 0.1429 | 0.2857 |
| cosine_accuracy@5 | 0.2857 | 0.5714 | 0.2857 | 0.2857 | 0.2857 |
| cosine_accuracy@10 | 0.5714 | 0.7143 | 0.5714 | 0.4286 | 0.5714 |
| cosine_precision@1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 |
| cosine_precision@3 | 0.0952 | 0.1429 | 0.0 | 0.0476 | 0.0952 |
| cosine_precision@5 | 0.0571 | 0.1143 | 0.0571 | 0.0571 | 0.0571 |
| cosine_precision@10 | 0.0571 | 0.0714 | 0.0571 | 0.0429 | 0.0571 |
| cosine_recall@1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 |
| cosine_recall@3 | 0.2857 | 0.4286 | 0.0 | 0.1429 | 0.2857 |
| cosine_recall@5 | 0.2857 | 0.5714 | 0.2857 | 0.2857 | 0.2857 |
| cosine_recall@10 | 0.5714 | 0.7143 | 0.5714 | 0.4286 | 0.5714 |
| **cosine_ndcg@10** | **0.2568** | **0.3359** | **0.2216** | **0.1806** | **0.3211** |
| cosine_mrr@10 | 0.1599 | 0.2156 | 0.1156 | 0.1037 | 0.248 |
| cosine_map@100 | 0.177 | 0.2208 | 0.1307 | 0.1194 | 0.2591 |
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 63 training samples
* Columns: positive
and anchor
* Approximate statistics based on the first 63 samples:
| | positive | anchor |
|:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details |
Google Pixel 8
| Điện thoại Android mới nhất
|
| Samsung Galaxy S22 Ultra
| Điện thoại có sạc không dây
|
| Samsung Galaxy Note 20 Ultra đi kèm bút S Pen
| Điện thoại có bút
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `bf16`: True
- `load_best_model_at_end`: True
#### All Hyperparameters