zwloong commited on
Commit
021aba9
·
verified ·
1 Parent(s): abe4cf4

Model card auto-generated by SimpleTuner

Browse files
Files changed (1) hide show
  1. README.md +8 -18
README.md CHANGED
@@ -10,17 +10,7 @@ tags:
10
  - lora
11
  - template:sd-lora
12
  inference: true
13
- widget:
14
- - text: 'unconditional (blank prompt)'
15
- parameters:
16
- negative_prompt: 'blurry, cropped, ugly'
17
- output:
18
- url: ./assets/image_0_0.png
19
- - text: 'A design of a cute pokemon, on a white background'
20
- parameters:
21
- negative_prompt: 'blurry, cropped, ugly'
22
- output:
23
- url: ./assets/image_1_0.png
24
  ---
25
 
26
  # sd3-lora-training-v2
@@ -33,7 +23,7 @@ The main validation prompt used during training was:
33
 
34
 
35
  ```
36
- A design of a cute pokemon, on a white background
37
  ```
38
 
39
  ## Validation settings
@@ -46,7 +36,7 @@ A design of a cute pokemon, on a white background
46
 
47
  Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
48
 
49
- You can find some example images in the following gallery:
50
 
51
 
52
  <Gallery />
@@ -57,9 +47,9 @@ You may reuse the base model text encoder for inference.
57
 
58
  ## Training settings
59
 
60
- - Training epochs: 90
61
- - Training steps: 3000
62
- - Learning rate: 0.0001
63
  - Effective batch size: 2
64
  - Micro-batch size: 1
65
  - Gradient accumulation steps: 2
@@ -80,7 +70,7 @@ You may reuse the base model text encoder for inference.
80
 
81
  ### Pal_BLIP
82
  - Repeats: 0
83
- - Total number of images: 66
84
  - Total number of aspect buckets: 1
85
  - Resolution: 1.048576 megapixels
86
  - Cropped: True
@@ -100,7 +90,7 @@ adapter_id = 'zwloong/sd3-lora-training-v2'
100
  pipeline = DiffusionPipeline.from_pretrained(model_id)
101
  pipeline.load_lora_weights(adapter_id)
102
 
103
- prompt = "A design of a cute pokemon, on a white background"
104
  negative_prompt = 'blurry, cropped, ugly'
105
  pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
106
  image = pipeline(
 
10
  - lora
11
  - template:sd-lora
12
  inference: true
13
+
 
 
 
 
 
 
 
 
 
 
14
  ---
15
 
16
  # sd3-lora-training-v2
 
23
 
24
 
25
  ```
26
+ ethnographic photography of teddy bear at a picnic
27
  ```
28
 
29
  ## Validation settings
 
36
 
37
  Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
38
 
39
+
40
 
41
 
42
  <Gallery />
 
47
 
48
  ## Training settings
49
 
50
+ - Training epochs: 89
51
+ - Training steps: 2960
52
+ - Learning rate: 8e-07
53
  - Effective batch size: 2
54
  - Micro-batch size: 1
55
  - Gradient accumulation steps: 2
 
70
 
71
  ### Pal_BLIP
72
  - Repeats: 0
73
+ - Total number of images: 73
74
  - Total number of aspect buckets: 1
75
  - Resolution: 1.048576 megapixels
76
  - Cropped: True
 
90
  pipeline = DiffusionPipeline.from_pretrained(model_id)
91
  pipeline.load_lora_weights(adapter_id)
92
 
93
+ prompt = "ethnographic photography of teddy bear at a picnic"
94
  negative_prompt = 'blurry, cropped, ugly'
95
  pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
96
  image = pipeline(