Model card auto-generated by SimpleTuner
Browse files
README.md
CHANGED
@@ -10,17 +10,7 @@ tags:
|
|
10 |
- lora
|
11 |
- template:sd-lora
|
12 |
inference: true
|
13 |
-
|
14 |
-
- text: 'unconditional (blank prompt)'
|
15 |
-
parameters:
|
16 |
-
negative_prompt: 'blurry, cropped, ugly'
|
17 |
-
output:
|
18 |
-
url: ./assets/image_0_0.png
|
19 |
-
- text: 'A design of a cute pokemon, on a white background'
|
20 |
-
parameters:
|
21 |
-
negative_prompt: 'blurry, cropped, ugly'
|
22 |
-
output:
|
23 |
-
url: ./assets/image_1_0.png
|
24 |
---
|
25 |
|
26 |
# sd3-lora-training-v2
|
@@ -33,7 +23,7 @@ The main validation prompt used during training was:
|
|
33 |
|
34 |
|
35 |
```
|
36 |
-
|
37 |
```
|
38 |
|
39 |
## Validation settings
|
@@ -46,7 +36,7 @@ A design of a cute pokemon, on a white background
|
|
46 |
|
47 |
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
|
48 |
|
49 |
-
|
50 |
|
51 |
|
52 |
<Gallery />
|
@@ -57,9 +47,9 @@ You may reuse the base model text encoder for inference.
|
|
57 |
|
58 |
## Training settings
|
59 |
|
60 |
-
- Training epochs:
|
61 |
-
- Training steps:
|
62 |
-
- Learning rate:
|
63 |
- Effective batch size: 2
|
64 |
- Micro-batch size: 1
|
65 |
- Gradient accumulation steps: 2
|
@@ -80,7 +70,7 @@ You may reuse the base model text encoder for inference.
|
|
80 |
|
81 |
### Pal_BLIP
|
82 |
- Repeats: 0
|
83 |
-
- Total number of images:
|
84 |
- Total number of aspect buckets: 1
|
85 |
- Resolution: 1.048576 megapixels
|
86 |
- Cropped: True
|
@@ -100,7 +90,7 @@ adapter_id = 'zwloong/sd3-lora-training-v2'
|
|
100 |
pipeline = DiffusionPipeline.from_pretrained(model_id)
|
101 |
pipeline.load_lora_weights(adapter_id)
|
102 |
|
103 |
-
prompt = "
|
104 |
negative_prompt = 'blurry, cropped, ugly'
|
105 |
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
|
106 |
image = pipeline(
|
|
|
10 |
- lora
|
11 |
- template:sd-lora
|
12 |
inference: true
|
13 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
# sd3-lora-training-v2
|
|
|
23 |
|
24 |
|
25 |
```
|
26 |
+
ethnographic photography of teddy bear at a picnic
|
27 |
```
|
28 |
|
29 |
## Validation settings
|
|
|
36 |
|
37 |
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
|
38 |
|
39 |
+
|
40 |
|
41 |
|
42 |
<Gallery />
|
|
|
47 |
|
48 |
## Training settings
|
49 |
|
50 |
+
- Training epochs: 89
|
51 |
+
- Training steps: 2960
|
52 |
+
- Learning rate: 8e-07
|
53 |
- Effective batch size: 2
|
54 |
- Micro-batch size: 1
|
55 |
- Gradient accumulation steps: 2
|
|
|
70 |
|
71 |
### Pal_BLIP
|
72 |
- Repeats: 0
|
73 |
+
- Total number of images: 73
|
74 |
- Total number of aspect buckets: 1
|
75 |
- Resolution: 1.048576 megapixels
|
76 |
- Cropped: True
|
|
|
90 |
pipeline = DiffusionPipeline.from_pretrained(model_id)
|
91 |
pipeline.load_lora_weights(adapter_id)
|
92 |
|
93 |
+
prompt = "ethnographic photography of teddy bear at a picnic"
|
94 |
negative_prompt = 'blurry, cropped, ugly'
|
95 |
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
|
96 |
image = pipeline(
|