File size: 3,170 Bytes
f47f4e5
f994a5e
 
f47f4e5
 
 
f994a5e
f47f4e5
 
f994a5e
f47f4e5
 
 
f994a5e
f47f4e5
 
 
 
 
f994a5e
 
f47f4e5
 
 
 
 
 
 
 
 
 
 
 
f994a5e
f47f4e5
f994a5e
f47f4e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
language:
- eu
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper Large-V2 Basque
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: mozilla-foundation/common_voice_13_0 eu
      type: mozilla-foundation/common_voice_13_0
      config: eu
      split: validation
      args: eu
    metrics:
    - name: Wer
      type: wer
      value: 12.627697515565494
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Large-V2 Basque

This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_13_0 eu dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4121
- Wer: 12.6277

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 20000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Wer     |
|:-------------:|:------:|:-----:|:---------------:|:-------:|
| 0.1098        | 5.85   | 1000  | 0.2495          | 16.6354 |
| 0.022         | 11.7   | 2000  | 0.2733          | 14.6306 |
| 0.0089        | 17.54  | 3000  | 0.3075          | 13.9697 |
| 0.0056        | 23.39  | 4000  | 0.3206          | 14.0724 |
| 0.0053        | 29.24  | 5000  | 0.3314          | 13.7944 |
| 0.0037        | 35.09  | 6000  | 0.3376          | 13.7480 |
| 0.0027        | 40.94  | 7000  | 0.3492          | 13.6815 |
| 0.0023        | 46.78  | 8000  | 0.3455          | 13.8488 |
| 0.002         | 52.63  | 9000  | 0.3500          | 13.5123 |
| 0.0009        | 58.48  | 10000 | 0.3590          | 13.2967 |
| 0.0016        | 64.33  | 11000 | 0.3675          | 13.4679 |
| 0.0007        | 70.18  | 12000 | 0.3785          | 13.2685 |
| 0.0008        | 76.02  | 13000 | 0.3822          | 13.3652 |
| 0.0004        | 81.87  | 14000 | 0.3929          | 13.3148 |
| 0.0006        | 87.72  | 15000 | 0.3880          | 13.1032 |
| 0.0002        | 93.57  | 16000 | 0.4005          | 12.6982 |
| 0.0002        | 99.42  | 17000 | 0.4004          | 13.1516 |
| 0.0001        | 105.26 | 18000 | 0.4140          | 12.8735 |
| 0.0001        | 111.11 | 19000 | 0.4131          | 12.5128 |
| 0.0001        | 116.96 | 20000 | 0.4121          | 12.6277 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1