--- language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - bleu model-index: - name: model-medium-Punjabi-3-0-2000-1e-06-8-8-1000 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: hi, split: test' metrics: - name: Bleu type: bleu value: 34.50306363991838 --- # model-medium-Punjabi-3-0-2000-1e-06-8-8-1000 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.9100 - Bleu: 34.5031 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.941 | 0.97 | 1000 | 0.9651 | 32.9342 | | 0.8558 | 1.94 | 2000 | 0.9100 | 34.5031 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0