zkdeng commited on
Commit
5522dd1
·
verified ·
1 Parent(s): 4c9771b

Model save

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/convnextv2-pico-1k-224
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: 10-convnextv2-pico-1k-224-finetuned-spiderTraining20-500
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # 10-convnextv2-pico-1k-224-finetuned-spiderTraining20-500
20
+
21
+ This model is a fine-tuned version of [facebook/convnextv2-pico-1k-224](https://huggingface.co/facebook/convnextv2-pico-1k-224) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.3910
24
+ - Accuracy: 0.8949
25
+ - Precision: 0.8942
26
+ - Recall: 0.8897
27
+ - F1: 0.8904
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 25
48
+ - eval_batch_size: 25
49
+ - seed: 42
50
+ - distributed_type: multi-GPU
51
+ - gradient_accumulation_steps: 4
52
+ - total_train_batch_size: 100
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - lr_scheduler_warmup_ratio: 0.1
56
+ - num_epochs: 10
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
61
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
62
+ | 1.1025 | 1.0 | 80 | 0.9880 | 0.6847 | 0.7201 | 0.6796 | 0.6821 |
63
+ | 0.7366 | 2.0 | 160 | 0.6502 | 0.8098 | 0.8198 | 0.8103 | 0.8059 |
64
+ | 0.6295 | 3.0 | 240 | 0.5303 | 0.8348 | 0.8410 | 0.8279 | 0.8270 |
65
+ | 0.493 | 4.0 | 320 | 0.4666 | 0.8539 | 0.8522 | 0.8533 | 0.8491 |
66
+ | 0.3939 | 5.0 | 400 | 0.4831 | 0.8579 | 0.8658 | 0.8503 | 0.8508 |
67
+ | 0.3338 | 6.0 | 480 | 0.4551 | 0.8729 | 0.8711 | 0.8670 | 0.8665 |
68
+ | 0.2841 | 7.0 | 560 | 0.4357 | 0.8939 | 0.8961 | 0.8931 | 0.8921 |
69
+ | 0.2406 | 8.0 | 640 | 0.4074 | 0.8829 | 0.8820 | 0.8760 | 0.8776 |
70
+ | 0.2008 | 9.0 | 720 | 0.4074 | 0.8909 | 0.8900 | 0.8872 | 0.8868 |
71
+ | 0.2075 | 10.0 | 800 | 0.3910 | 0.8949 | 0.8942 | 0.8897 | 0.8904 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.33.3
77
+ - Pytorch 2.0.1+cu117
78
+ - Datasets 2.14.5
79
+ - Tokenizers 0.13.3