File size: 5,113 Bytes
8895aa0 650280a 8895aa0 4902e94 8895aa0 26706ba 8895aa0 650280a 8895aa0 4a6061e 8895aa0 6604b6f 8895aa0 650280a 8895aa0 26706ba 8895aa0 650280a 6604b6f 650280a 8895aa0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
---
license: mit
pipeline_tag: text-generation
tags:
- ocean
- text-generation-inference
- oceangpt
language:
- en
- zh
datasets:
- zjunlp/OceanInstruct
---
<div align="center">
<img src="logo.jpg" width="300px">
**OceanGPT(沧渊): A Large Language Model for Ocean Science Tasks**
<p align="center">
<a href="https://github.com/zjunlp/OceanGPT">Project</a> •
<a href="https://arxiv.org/abs/2310.02031">Paper</a> •
<a href="https://huggingface.co/collections/zjunlp/oceangpt-664cc106358fdd9f09aa5157">Models</a> •
<a href="http://oceangpt.zjukg.cn/">Web</a> •
<a href="#quickstart">Quickstart</a> •
<a href="#citation">Citation</a>
</p>
</div>
OceanGPT-7b-v0.2 is based on Qwen2 and has been trained on a bilingual dataset in the ocean domain, covering both Chinese and English.
- ❗**Disclaimer: This project is purely an academic exploration rather than a product. Please be aware that due to the inherent limitations of large language models, there may be issues such as hallucinations.**
## ⏩Quickstart
### Download the model
Download the model: [OceanGPT-7b-v0.2](https://huggingface.co/zjunlp/OceanGPT-7b-v0.2)
```shell
git lfs install
git clone https://huggingface.co/zjunlp/OceanGPT-7b-v0.2
```
or
```
huggingface-cli download --resume-download zjunlp/OceanGPT-7b-v0.2 --local-dir OceanGPT-7b-v0.2 --local-dir-use-symlinks False
```
### Inference
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
device = "cuda" # the device to load the model onto
path = 'YOUR-MODEL-PATH'
model = AutoModelForCausalLM.from_pretrained(
path,
torch_dtype=torch.bfloat16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(path)
prompt = "Which is the largest ocean in the world?"
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
## 📌Models
| Model Name | HuggingFace | WiseModel | ModelScope |
|-------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| OceanGPT-14B-v0.1 (based on Qwen) | <a href="https://huggingface.co/zjunlp/OceanGPT-14B-v0.1" target="_blank">14B</a> | <a href="https://wisemodel.cn/models/zjunlp/OceanGPT-14B-v0.1" target="_blank">14B</a> | <a href="https://modelscope.cn/models/ZJUNLP/OceanGPT-14B-v0.1" target="_blank">14B</a> |
| OceanGPT-7B-v0.2 (based on Qwen) | <a href="https://huggingface.co/zjunlp/OceanGPT-7b-v0.2" target="_blank">7B</a> | <a href="https://wisemodel.cn/models/zjunlp/OceanGPT-7b-v0.2" target="_blank">7B</a> | <a href="https://modelscope.cn/models/ZJUNLP/OceanGPT-7b-v0.2" target="_blank">7B</a> |
| OceanGPT-2B-v0.1 (based on MiniCPM) | <a href="https://huggingface.co/zjunlp/OceanGPT-2B-v0.1" target="_blank">2B</a> | <a href="https://wisemodel.cn/models/zjunlp/OceanGPT-2b-v0.1" target="_blank">2B</a> | <a href="https://modelscope.cn/models/ZJUNLP/OceanGPT-2B-v0.1" target="_blank">2B</a> |
## 🌻Acknowledgement
OceanGPT(沧渊) is trained based on the open-sourced large language models including [Qwen](https://huggingface.co/Qwen), [MiniCPM](https://huggingface.co/collections/openbmb/minicpm-2b-65d48bf958302b9fd25b698f), [LLaMA](https://huggingface.co/meta-llama). Thanks for their great contributions!
## Limitations
- The model may have hallucination issues.
- We did not optimize the identity and the model may generate identity information similar to that of Qwen/MiniCPM/LLaMA/GPT series models.
- The model's output is influenced by prompt tokens, which may result in inconsistent results across multiple attempts.
- The model requires the inclusion of specific simulator code instructions for training in order to possess simulated embodied intelligence capabilities (the simulator is subject to copyright restrictions and cannot be made available for now), and its current capabilities are quite limited.
### 🚩Citation
Please cite the following paper if you use OceanGPT in your work.
```bibtex
@article{bi2023oceangpt,
title={OceanGPT: A Large Language Model for Ocean Science Tasks},
author={Bi, Zhen and Zhang, Ningyu and Xue, Yida and Ou, Yixin and Ji, Daxiong and Zheng, Guozhou and Chen, Huajun},
journal={arXiv preprint arXiv:2310.02031},
year={2023}
}
``` |