ziniuli commited on
Commit
c99152e
·
verified ·
1 Parent(s): 8a5d43b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +153 -0
README.md ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: transformers
6
+
7
+ ---
8
+
9
+ # Model Card for Mistral-7B-ReMax-v0.1
10
+
11
+
12
+ The Mistral-7B-ReMax-v0.1 Large Language Model (LLM) is a Reinforcement Learning from Human Preference (RLHF) fine-tuned version of [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2).
13
+
14
+ The fine-tuning algorithm is ReMax and please find algorithm details in the [paper](https://arxiv.org/abs/2310.10505).
15
+
16
+ ## Model Details
17
+
18
+ - Developed by: Ziniu Li
19
+ - License: apache-2.0
20
+ - Finetuned from [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
21
+
22
+ ## Uses
23
+
24
+ ### Direct Use
25
+
26
+ The instruction format is the same as Mistral-7B-Instruct-v0.2. Specifically, the prompt should be surrounded by \[INST\] and \[/INST\] tokens.
27
+
28
+ ```
29
+ text = "<s>[INST] What is your favourite condiment? [/INST]"
30
+ "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
31
+ "[INST] Do you have mayonnaise recipes? [/INST]"
32
+ ```
33
+
34
+
35
+ ## Training Details
36
+
37
+ ### Training Data
38
+
39
+ 10k prompts from the [lmsys-chat-1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) dataset. Note that no responses from this dataset are used in training.
40
+
41
+ ### Reward Model
42
+
43
+ The reward model is based on [UltraRM-13b](https://huggingface.co/openbmb/UltraRM-13b).
44
+
45
+ **Important**: UltraRM-13b uses a different instruction template with Mistral-7B. To address this issue, we change the chat template to that of UltraRM-13b when evaluating the reward score in RLHF fine-tuning.
46
+
47
+
48
+ ### Training Procedure
49
+
50
+ The training algorithm is ReMax, whose details are available in the [paper](https://arxiv.org/abs/2310.10505), and implementations are available in the [repository](https://github.com/liziniu/ReMax).
51
+
52
+
53
+ ### Training Hyperparameters
54
+
55
+ ```
56
+ max_prompt_seq: 384
57
+ max_answer_seq: 384
58
+ learning_rate: 5e-7
59
+ num_train_epochs: 1
60
+ kl_penalty: full_step
61
+ kl_ctl: 0.1
62
+ reward_clip_value: 1.0
63
+ temperature for sampling: 0.7
64
+ top_p for sampling: 0.9
65
+ ```
66
+
67
+
68
+ ## Evaluation
69
+
70
+
71
+ ### Chat1M
72
+
73
+
74
+ Since we fine-tune Mistral-7B-Instruct-v0.2 with the lmsys-chat-1m dataset, we first evaluate the quality of responses. We randomly select 500 prompts from the lmsys-chat-1m dataset and lets the models to generate responses. Then, we let GPT-4 to evaluate the binary win rate. The average win-rate of Mistral-7B-ReMax-v0.1 is 57.8%.
75
+
76
+ | | Mistral-7B-ReMax-v0.1 Wins | Mistral-7B-ReMax-v0.1 Wins |
77
+ | ------------------------ | -------------------------- | -------------------------- |
78
+ | Mistral-7B-Instruct-v0.2 | 289 | 211 |
79
+
80
+ Samples of responses are provided below.
81
+
82
+ ```
83
+ ==================Instruction================
84
+ 你好
85
+ ==================Mistral-7B-Instruct-v0.2================
86
+ 你好!我是一位帮助您解答问题的机器人。如果您有任何问题,请告诉我,我会尽力回答。
87
+
88
+ 你好(Hello)是中文语言中的一个常用词语,常用于问候或表示亲和,意思是“你好,你很好”。
89
+
90
+ 在我帮助您之前,我想先问一下,您是否知道什么是机器学习?机器学习是人工智能领域中的一种技术,它允许计算机自动学习和改进其行为,以便从数据中提取出有价值的信息,并使计算机能够做出更智能的决策。
91
+
92
+ 如果您已经熟悉机器学习,那么我可以帮助您深入探讨相关主题,如神经网络、支持向量机、决策树等。但是,如果您对机器学习不太熟悉,我可以简单地解释它的基本原理,以及它在现实生活中的应用。
93
+
94
+ 请告诉我您的需求,我会尽力满足您的期望。
95
+
96
+ 再次问候您:你好!
97
+ ==================Mistral-7B-ReMax-v0.1================
98
+ 好的,欢迎使用我的帮助!(Hello, welcome to use my help!)
99
+
100
+ 是的,我可以以中文回答你的问题,或者帮你完成一些简单的任务。(Yes, I can answer your questions in Chinese or help you with some simple tasks.)
101
+
102
+ 请问有什么特定的问题需要我帮忙呢?(What specific question do you need my help with?)
103
+
104
+ 或者,你可以告诉我什么方面我可以提供帮助。(Or you can tell me which area I can provide help in.)
105
+
106
+ 希望我能帮到你!(I hope I can help you!)
107
+ ```
108
+
109
+
110
+ ### AlpacaEval
111
+
112
+ [AlpacaEval](https://github.com/tatsu-lab/alpaca_eval) provides 805 test questions that the model has not been trained on. We provide the evaluation results below:
113
+
114
+ | | AlpacaEval | AlpacaEval 2 | Response Length |
115
+ | ------------------------ | ---------- | ------------ | --------------- |
116
+ | Mistral-7B-Instruct-v0.2 | 92.78 | 14.72 | 1676 |
117
+ | Mistral-7B-ReMax-v0.1 | 94.40 | 16.00 | 1478 |
118
+ | LLaMa2 Chat 7B | 71.37 | 4.96 | 1479 |
119
+ | LLaMa2 Chat 70B | 92.66 | 13.87 | 1790 |
120
+ | GPT-4 | 95.28 | 23.58 | 2049 |
121
+
122
+ Samples of responses are provided below
123
+
124
+ ```
125
+ ==================Instruction================
126
+ Marie is at the music store for a store day. She bought two $50 combos. Then, for $25 she bought two t-shirts for $5 each and five hoodies for $2 each. Then, she bought sneakers for $8 each. How much did she spend total?
127
+ ==================Mistral-7B-Instruct-v0.2================
128
+ Marie bought 2 combos at $50 each, so that's $100. She bought 2 t-shirts at $5 each, which is $10. She bought 5 hoodies at $2 each, which is $10. The sneakers cost $8. So Marie spent a total of $118. ($100 + $10 + $8 = $118)
129
+ ==================Mistral-7B-ReMax-v0.1================
130
+ Marie bought two combos at $50 each, so that's $100. She bought two t-shirts for $5 each, which totals $10. She bought five hoodies for $2 each, so that's $10. The sneakers cost $8.
131
+
132
+ So Marie spent $100 + $10 + $10 + $8 = $128 in total.
133
+ ```
134
+
135
+ ## Limitations
136
+
137
+ The Mistral-7B-ReMax-v0.1 model demonstrates that the optimization algorithm ReMax is effective. This model shares the same limitations as the Mistral-7B-Instruct-v0.2 model. In particular, it does not have any moderation mechanisms.
138
+
139
+ ## Citation
140
+
141
+
142
+ **BibTeX:**
143
+
144
+
145
+ ```
146
+ @article{li2023remax,
147
+ title={Remax: A simple, effective, and efficient method for aligning large language models},
148
+ author={Li, Ziniu and Xu, Tian and Zhang, Yushun and Yu, Yang and Sun, Ruoyu and Luo, Zhi-Quan},
149
+ journal={arXiv preprint arXiv:2310.10505},
150
+ year={2023}
151
+ }
152
+ ```
153
+