File size: 11,604 Bytes
2c26ac8 4f41c8c 2c26ac8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import math
import torch
from torch import nn
from torch.distributed.algorithms.ddp_comm_hooks import default as comm_hooks_default
from fvcore.nn.weight_init import c2_msra_fill, c2_xavier_fill
from .norm import get_norm
from .stem import VideoModelStem
from .resnet import ResStage
from .head import X3DHead
# round width
def round_width(width, multiplier, min_width=1, divisor=1):
if not multiplier:
return width
width *= multiplier
min_width = min_width or divisor
width_out = max(min_width, int(width + divisor / 2) // divisor * divisor)
if width_out < 0.9 * width:
width_out += divisor
return int(width_out)
# init weights
def init_weights(
model, fc_init_std=0.01, zero_init_final_bn=True, zero_init_final_conv=False
):
"""
Performs ResNet style weight initialization.
Args:
fc_init_std (float): the expected standard deviation for fc layer.
zero_init_final_bn (bool): if True, zero initialize the final bn for
every bottleneck.
"""
for m in model.modules():
if isinstance(m, nn.Conv3d):
# Note that there is no bias due to BN
if hasattr(m, "final_conv") and zero_init_final_conv:
m.weight.data.zero_()
else:
"""
Follow the initialization method proposed in:
{He, Kaiming, et al.
"Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification."
arXiv preprint arXiv:1502.01852 (2015)}
"""
c2_msra_fill(m)
elif isinstance(m, (nn.BatchNorm3d, nn.BatchNorm2d, nn.BatchNorm1d)):
if (
hasattr(m, "transform_final_bn")
and m.transform_final_bn
and zero_init_final_bn
):
batchnorm_weight = 0.0
else:
batchnorm_weight = 1.0
if m.weight is not None:
m.weight.data.fill_(batchnorm_weight)
if m.bias is not None:
m.bias.data.zero_()
if isinstance(m, nn.Linear):
if hasattr(m, "xavier_init") and m.xavier_init:
c2_xavier_fill(m)
else:
m.weight.data.normal_(mean=0.0, std=fc_init_std)
if m.bias is not None:
m.bias.data.zero_()
# pool1
_POOL1 = {
"2d": [[1, 1, 1]],
"c2d": [[2, 1, 1]],
"slow_c2d": [[1, 1, 1]],
"i3d": [[2, 1, 1]],
"slow_i3d": [[1, 1, 1]],
"slow": [[1, 1, 1]],
"slowfast": [[1, 1, 1], [1, 1, 1]],
"x3d": [[1, 1, 1]],
}
# temporal kernel basis
_TEMPORAL_KERNEL_BASIS = {
"2d": [
[[1]], # conv1 temporal kernel.
[[1]], # res2 temporal kernel.
[[1]], # res3 temporal kernel.
[[1]], # res4 temporal kernel.
[[1]], # res5 temporal kernel.
],
"c2d": [
[[1]], # conv1 temporal kernel.
[[1]], # res2 temporal kernel.
[[1]], # res3 temporal kernel.
[[1]], # res4 temporal kernel.
[[1]], # res5 temporal kernel.
],
"slow_c2d": [
[[1]], # conv1 temporal kernel.
[[1]], # res2 temporal kernel.
[[1]], # res3 temporal kernel.
[[1]], # res4 temporal kernel.
[[1]], # res5 temporal kernel.
],
"i3d": [
[[5]], # conv1 temporal kernel.
[[3]], # res2 temporal kernel.
[[3, 1]], # res3 temporal kernel.
[[3, 1]], # res4 temporal kernel.
[[1, 3]], # res5 temporal kernel.
],
"slow_i3d": [
[[5]], # conv1 temporal kernel.
[[3]], # res2 temporal kernel.
[[3, 1]], # res3 temporal kernel.
[[3, 1]], # res4 temporal kernel.
[[1, 3]], # res5 temporal kernel.
],
"slow": [
[[1]], # conv1 temporal kernel.
[[1]], # res2 temporal kernel.
[[1]], # res3 temporal kernel.
[[3]], # res4 temporal kernel.
[[3]], # res5 temporal kernel.
],
"slowfast": [
[[1], [5]], # conv1 temporal kernel for slow and fast pathway.
[[1], [3]], # res2 temporal kernel for slow and fast pathway.
[[1], [3]], # res3 temporal kernel for slow and fast pathway.
[[3], [3]], # res4 temporal kernel for slow and fast pathway.
[[3], [3]], # res5 temporal kernel for slow and fast pathway.
],
"x3d": [
[[5]], # conv1 temporal kernels.
[[3]], # res2 temporal kernels.
[[3]], # res3 temporal kernels.
[[3]], # res4 temporal kernels.
[[3]], # res5 temporal kernels.
],
}
# model stage depth
_MODEL_STAGE_DEPTH = {18: (2, 2, 2, 2), 50: (3, 4, 6, 3), 101: (3, 4, 23, 3)}
# X3D model
class X3D(nn.Module):
"""
X3D model builder. It builds a X3D network backbone, which is a ResNet.
Christoph Feichtenhofer.
"X3D: Expanding Architectures for Efficient Video Recognition."
https://arxiv.org/abs/2004.04730
"""
def __init__(self, cfg):
"""
The `__init__` method of any subclass should also contain these
arguments.
Args:
cfg (CfgNode): model building configs, details are in the
comments of the config file.
"""
super(X3D, self).__init__()
self.norm_module = get_norm(cfg)
self.enable_detection = cfg.DETECTION.ENABLE
self.num_pathways = 1
exp_stage = 2.0
self.dim_c1 = cfg.X3D.DIM_C1
self.dim_res2 = (
round_width(self.dim_c1, exp_stage, divisor=8)
if cfg.X3D.SCALE_RES2
else self.dim_c1
)
self.dim_res3 = round_width(self.dim_res2, exp_stage, divisor=8)
self.dim_res4 = round_width(self.dim_res3, exp_stage, divisor=8)
self.dim_res5 = round_width(self.dim_res4, exp_stage, divisor=8)
self.block_basis = [
# blocks, c, stride
[1, self.dim_res2, 2],
[2, self.dim_res3, 2],
[5, self.dim_res4, 2],
[3, self.dim_res5, 2],
]
self._construct_network(cfg)
init_weights(
self, cfg.MODEL.FC_INIT_STD, cfg.RESNET.ZERO_INIT_FINAL_BN
)
def _round_repeats(self, repeats, multiplier):
"""Round number of layers based on depth multiplier."""
if not multiplier:
return repeats
return int(math.ceil(multiplier * repeats))
def _construct_network(self, cfg):
"""
Builds a single pathway X3D model.
Args:
cfg (CfgNode): model building configs, details are in the
comments of the config file.
"""
assert cfg.MODEL.ARCH in _POOL1.keys()
assert cfg.RESNET.DEPTH in _MODEL_STAGE_DEPTH.keys()
(d2, d3, d4, d5) = _MODEL_STAGE_DEPTH[cfg.RESNET.DEPTH]
num_groups = cfg.RESNET.NUM_GROUPS
width_per_group = cfg.RESNET.WIDTH_PER_GROUP
dim_inner = num_groups * width_per_group
w_mul = cfg.X3D.WIDTH_FACTOR
d_mul = cfg.X3D.DEPTH_FACTOR
dim_res1 = round_width(self.dim_c1, w_mul)
temp_kernel = _TEMPORAL_KERNEL_BASIS[cfg.MODEL.ARCH]
self.s1 = VideoModelStem(
dim_in=cfg.DATA.INPUT_CHANNEL_NUM,
dim_out=[dim_res1],
kernel=[temp_kernel[0][0] + [3, 3]],
stride=[[1, 2, 2]],
padding=[[temp_kernel[0][0][0] // 2, 1, 1]],
norm_module=self.norm_module,
stem_func_name="x3d_stem",
)
# blob_in = s1
dim_in = dim_res1
for stage, block in enumerate(self.block_basis):
dim_out = round_width(block[1], w_mul)
dim_inner = int(cfg.X3D.BOTTLENECK_FACTOR * dim_out)
n_rep = self._round_repeats(block[0], d_mul)
# start w res2 to follow convention
prefix = "s{}".format(stage + 2)
s = ResStage(
dim_in=[dim_in],
dim_out=[dim_out],
dim_inner=[dim_inner],
temp_kernel_sizes=temp_kernel[1],
stride=[block[2]],
num_blocks=[n_rep],
num_groups=[dim_inner] if cfg.X3D.CHANNELWISE_3x3x3 else [
num_groups],
num_block_temp_kernel=[n_rep],
nonlocal_inds=cfg.NONLOCAL.LOCATION[0],
nonlocal_group=cfg.NONLOCAL.GROUP[0],
nonlocal_pool=cfg.NONLOCAL.POOL[0],
instantiation=cfg.NONLOCAL.INSTANTIATION,
trans_func_name=cfg.RESNET.TRANS_FUNC,
stride_1x1=cfg.RESNET.STRIDE_1X1,
norm_module=self.norm_module,
dilation=cfg.RESNET.SPATIAL_DILATIONS[stage],
drop_connect_rate=cfg.MODEL.DROPCONNECT_RATE
* (stage + 2)
/ (len(self.block_basis) + 1),
)
dim_in = dim_out
self.add_module(prefix, s)
if self.enable_detection:
NotImplementedError
else:
spat_sz = int(math.ceil(cfg.DATA.TRAIN_CROP_SIZE / 32.0))
self.head = X3DHead(
dim_in=dim_out,
dim_inner=dim_inner,
dim_out=cfg.X3D.DIM_C5,
num_classes=cfg.MODEL.NUM_CLASSES,
pool_size=[cfg.DATA.NUM_FRAMES, spat_sz, spat_sz],
dropout_rate=cfg.MODEL.DROPOUT_RATE,
act_func=cfg.MODEL.HEAD_ACT,
bn_lin5_on=cfg.X3D.BN_LIN5,
)
def forward(self, x, bboxes=None):
for module in self.children():
x = module(x)
return x
def build_model(cfg, gpu_id=None):
if torch.cuda.is_available():
assert (
cfg.NUM_GPUS <= torch.cuda.device_count()
), "Cannot use more GPU devices than available"
else:
assert (
cfg.NUM_GPUS == 0
), "Cuda is not available. Please set `NUM_GPUS: 0 for running on CPUs."
# Construct the model
model = X3D(cfg)
if cfg.BN.NORM_TYPE == "sync_batchnorm_apex":
try:
import apex
except ImportError:
raise ImportError("APEX is required for this model, pelase install")
process_group = apex.parallel.create_syncbn_process_group(
group_size=cfg.BN.NUM_SYNC_DEVICES
)
model = apex.parallel.convert_syncbn_model(model, process_group=process_group)
if cfg.NUM_GPUS:
if gpu_id is None:
# Determine the GPU used by the current process
cur_device = torch.cuda.current_device()
else:
cur_device = gpu_id
# Transfer the model to the current GPU device
model = model.cuda(device=cur_device)
# Use multi-process data parallel model in the multi-gpu setting
if cfg.NUM_GPUS > 1:
# Make model replica operate on the current device
model = torch.nn.parallel.DistributedDataParallel(
module=model,
device_ids=[cur_device],
output_device=cur_device,
find_unused_parameters=(
True
if cfg.MODEL.DETACH_FINAL_FC
or cfg.MODEL.MODEL_NAME == "ContrastiveModel"
else False
),
)
if cfg.MODEL.FP16_ALLREDUCE:
model.register_comm_hook(
state=None, hook=comm_hooks_default.fp16_compress_hook
)
return model
|