File size: 32,254 Bytes
2c26ac8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
"""Video models."""
import torch
import torch.nn as nn
from pytorchvideo.layers.swish import Swish
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
"""
Stochastic Depth per sample.
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (
x.ndim - 1
) # work with diff dim tensors, not just 2D ConvNets
mask = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
mask.floor_() # binarize
output = x.div(keep_prob) * mask
return output
class Nonlocal(nn.Module):
"""
Builds Non-local Neural Networks as a generic family of building
blocks for capturing long-range dependencies. Non-local Network
computes the response at a position as a weighted sum of the
features at all positions. This building block can be plugged into
many computer vision architectures.
More details in the paper: https://arxiv.org/pdf/1711.07971.pdf
"""
def __init__(
self,
dim,
dim_inner,
pool_size=None,
instantiation="softmax",
zero_init_final_conv=False,
zero_init_final_norm=True,
norm_eps=1e-5,
norm_momentum=0.1,
norm_module=nn.BatchNorm3d,
):
"""
Args:
dim (int): number of dimension for the input.
dim_inner (int): number of dimension inside of the Non-local block.
pool_size (list): the kernel size of spatial temporal pooling,
temporal pool kernel size, spatial pool kernel size, spatial
pool kernel size in order. By default pool_size is None,
then there would be no pooling used.
instantiation (string): supports two different instantiation method:
"dot_product": normalizing correlation matrix with L2.
"softmax": normalizing correlation matrix with Softmax.
zero_init_final_conv (bool): If true, zero initializing the final
convolution of the Non-local block.
zero_init_final_norm (bool):
If true, zero initializing the final batch norm of the Non-local
block.
norm_module (nn.Module): nn.Module for the normalization layer. The
default is nn.BatchNorm3d.
"""
super(Nonlocal, self).__init__()
self.dim = dim
self.dim_inner = dim_inner
self.pool_size = pool_size
self.instantiation = instantiation
self.use_pool = (
False if pool_size is None else any((size > 1 for size in pool_size))
)
self.norm_eps = norm_eps
self.norm_momentum = norm_momentum
self._construct_nonlocal(
zero_init_final_conv, zero_init_final_norm, norm_module
)
def _construct_nonlocal(
self, zero_init_final_conv, zero_init_final_norm, norm_module
):
# Three convolution heads: theta, phi, and g.
self.conv_theta = nn.Conv3d(
self.dim, self.dim_inner, kernel_size=1, stride=1, padding=0
)
self.conv_phi = nn.Conv3d(
self.dim, self.dim_inner, kernel_size=1, stride=1, padding=0
)
self.conv_g = nn.Conv3d(
self.dim, self.dim_inner, kernel_size=1, stride=1, padding=0
)
# Final convolution output.
self.conv_out = nn.Conv3d(
self.dim_inner, self.dim, kernel_size=1, stride=1, padding=0
)
# Zero initializing the final convolution output.
self.conv_out.zero_init = zero_init_final_conv
# TODO: change the name to `norm`
self.bn = norm_module(
num_features=self.dim,
eps=self.norm_eps,
momentum=self.norm_momentum,
)
# Zero initializing the final bn.
self.bn.transform_final_bn = zero_init_final_norm
# Optional to add the spatial-temporal pooling.
if self.use_pool:
self.pool = nn.MaxPool3d(
kernel_size=self.pool_size,
stride=self.pool_size,
padding=[0, 0, 0],
)
def forward(self, x):
x_identity = x
N, C, T, H, W = x.size()
theta = self.conv_theta(x)
# Perform temporal-spatial pooling to reduce the computation.
if self.use_pool:
x = self.pool(x)
phi = self.conv_phi(x)
g = self.conv_g(x)
theta = theta.view(N, self.dim_inner, -1)
phi = phi.view(N, self.dim_inner, -1)
g = g.view(N, self.dim_inner, -1)
# (N, C, TxHxW) * (N, C, TxHxW) => (N, TxHxW, TxHxW).
theta_phi = torch.einsum("nct,ncp->ntp", (theta, phi))
# For original Non-local paper, there are two main ways to normalize
# the affinity tensor:
# 1) Softmax normalization (norm on exp).
# 2) dot_product normalization.
if self.instantiation == "softmax":
# Normalizing the affinity tensor theta_phi before softmax.
theta_phi = theta_phi * (self.dim_inner**-0.5)
theta_phi = nn.functional.softmax(theta_phi, dim=2)
elif self.instantiation == "dot_product":
spatial_temporal_dim = theta_phi.shape[2]
theta_phi = theta_phi / spatial_temporal_dim
else:
raise NotImplementedError("Unknown norm type {}".format(self.instantiation))
# (N, TxHxW, TxHxW) * (N, C, TxHxW) => (N, C, TxHxW).
theta_phi_g = torch.einsum("ntg,ncg->nct", (theta_phi, g))
# (N, C, TxHxW) => (N, C, T, H, W).
theta_phi_g = theta_phi_g.view(N, self.dim_inner, T, H, W)
p = self.conv_out(theta_phi_g)
p = self.bn(p)
return x_identity + p
class SE(nn.Module):
"""Squeeze-and-Excitation (SE) block w/ Swish: AvgPool, FC, Swish, FC, Sigmoid."""
def _round_width(self, width, multiplier, min_width=8, divisor=8):
"""
Round width of filters based on width multiplier
Args:
width (int): the channel dimensions of the input.
multiplier (float): the multiplication factor.
min_width (int): the minimum width after multiplication.
divisor (int): the new width should be dividable by divisor.
"""
if not multiplier:
return width
width *= multiplier
min_width = min_width or divisor
width_out = max(min_width, int(width + divisor / 2) // divisor * divisor)
if width_out < 0.9 * width:
width_out += divisor
return int(width_out)
def __init__(self, dim_in, ratio, relu_act=True):
"""
Args:
dim_in (int): the channel dimensions of the input.
ratio (float): the channel reduction ratio for squeeze.
relu_act (bool): whether to use ReLU activation instead
of Swish (default).
divisor (int): the new width should be dividable by divisor.
"""
super(SE, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool3d((1, 1, 1))
dim_fc = self._round_width(dim_in, ratio)
self.fc1 = nn.Conv3d(dim_in, dim_fc, 1, bias=True)
self.fc1_act = nn.ReLU() if relu_act else Swish()
self.fc2 = nn.Conv3d(dim_fc, dim_in, 1, bias=True)
self.fc2_sig = nn.Sigmoid()
def forward(self, x):
x_in = x
for module in self.children():
x = module(x)
return x_in * x
def get_trans_func(name):
"""
Retrieves the transformation module by name.
"""
trans_funcs = {
"bottleneck_transform": BottleneckTransform,
"basic_transform": BasicTransform,
"x3d_transform": X3DTransform,
}
assert (
name in trans_funcs.keys()
), "Transformation function '{}' not supported".format(name)
return trans_funcs[name]
class BasicTransform(nn.Module):
"""
Basic transformation: Tx3x3, 1x3x3, where T is the size of temporal kernel.
"""
def __init__(
self,
dim_in,
dim_out,
temp_kernel_size,
stride,
dim_inner=None,
num_groups=1,
stride_1x1=None,
inplace_relu=True,
eps=1e-5,
bn_mmt=0.1,
dilation=1,
norm_module=nn.BatchNorm3d,
block_idx=0,
):
"""
Args:
dim_in (int): the channel dimensions of the input.
dim_out (int): the channel dimension of the output.
temp_kernel_size (int): the temporal kernel sizes of the first
convolution in the basic block.
stride (int): the stride of the bottleneck.
dim_inner (None): the inner dimension would not be used in
BasicTransform.
num_groups (int): number of groups for the convolution. Number of
group is always 1 for BasicTransform.
stride_1x1 (None): stride_1x1 will not be used in BasicTransform.
inplace_relu (bool): if True, calculate the relu on the original
input without allocating new memory.
eps (float): epsilon for batch norm.
bn_mmt (float): momentum for batch norm. Noted that BN momentum in
PyTorch = 1 - BN momentum in Caffe2.
norm_module (nn.Module): nn.Module for the normalization layer. The
default is nn.BatchNorm3d.
"""
super(BasicTransform, self).__init__()
self.temp_kernel_size = temp_kernel_size
self._inplace_relu = inplace_relu
self._eps = eps
self._bn_mmt = bn_mmt
self._construct(dim_in, dim_out, stride, dilation, norm_module)
def _construct(self, dim_in, dim_out, stride, dilation, norm_module):
# Tx3x3, BN, ReLU.
self.a = nn.Conv3d(
dim_in,
dim_out,
kernel_size=[self.temp_kernel_size, 3, 3],
stride=[1, stride, stride],
padding=[int(self.temp_kernel_size // 2), 1, 1],
bias=False,
)
self.a_bn = norm_module(
num_features=dim_out, eps=self._eps, momentum=self._bn_mmt
)
self.a_relu = nn.ReLU(inplace=self._inplace_relu)
# 1x3x3, BN.
self.b = nn.Conv3d(
dim_out,
dim_out,
kernel_size=[1, 3, 3],
stride=[1, 1, 1],
padding=[0, dilation, dilation],
dilation=[1, dilation, dilation],
bias=False,
)
self.b.final_conv = True
self.b_bn = norm_module(
num_features=dim_out, eps=self._eps, momentum=self._bn_mmt
)
self.b_bn.transform_final_bn = True
def forward(self, x):
x = self.a(x)
x = self.a_bn(x)
x = self.a_relu(x)
x = self.b(x)
x = self.b_bn(x)
return x
class X3DTransform(nn.Module):
"""
X3D transformation: 1x1x1, Tx3x3 (channelwise, num_groups=dim_in), 1x1x1,
augmented with (optional) SE (squeeze-excitation) on the 3x3x3 output.
T is the temporal kernel size (defaulting to 3)
"""
def __init__(
self,
dim_in,
dim_out,
temp_kernel_size,
stride,
dim_inner,
num_groups,
stride_1x1=False,
inplace_relu=True,
eps=1e-5,
bn_mmt=0.1,
dilation=1,
norm_module=nn.BatchNorm3d,
se_ratio=0.0625,
swish_inner=True,
block_idx=0,
):
"""
Args:
dim_in (int): the channel dimensions of the input.
dim_out (int): the channel dimension of the output.
temp_kernel_size (int): the temporal kernel sizes of the middle
convolution in the bottleneck.
stride (int): the stride of the bottleneck.
dim_inner (int): the inner dimension of the block.
num_groups (int): number of groups for the convolution. num_groups=1
is for standard ResNet like networks, and num_groups>1 is for
ResNeXt like networks.
stride_1x1 (bool): if True, apply stride to 1x1 conv, otherwise
apply stride to the 3x3 conv.
inplace_relu (bool): if True, calculate the relu on the original
input without allocating new memory.
eps (float): epsilon for batch norm.
bn_mmt (float): momentum for batch norm. Noted that BN momentum in
PyTorch = 1 - BN momentum in Caffe2.
dilation (int): size of dilation.
norm_module (nn.Module): nn.Module for the normalization layer. The
default is nn.BatchNorm3d.
se_ratio (float): if > 0, apply SE to the Tx3x3 conv, with the SE
channel dimensionality being se_ratio times the Tx3x3 conv dim.
swish_inner (bool): if True, apply swish to the Tx3x3 conv, otherwise
apply ReLU to the Tx3x3 conv.
"""
super(X3DTransform, self).__init__()
self.temp_kernel_size = temp_kernel_size
self._inplace_relu = inplace_relu
self._eps = eps
self._bn_mmt = bn_mmt
self._se_ratio = se_ratio
self._swish_inner = swish_inner
self._stride_1x1 = stride_1x1
self._block_idx = block_idx
self._construct(
dim_in,
dim_out,
stride,
dim_inner,
num_groups,
dilation,
norm_module,
)
def _construct(
self,
dim_in,
dim_out,
stride,
dim_inner,
num_groups,
dilation,
norm_module,
):
(str1x1, str3x3) = (stride, 1) if self._stride_1x1 else (1, stride)
# 1x1x1, BN, ReLU.
self.a = nn.Conv3d(
dim_in,
dim_inner,
kernel_size=[1, 1, 1],
stride=[1, str1x1, str1x1],
padding=[0, 0, 0],
bias=False,
)
self.a_bn = norm_module(
num_features=dim_inner, eps=self._eps, momentum=self._bn_mmt
)
self.a_relu = nn.ReLU(inplace=self._inplace_relu)
# Tx3x3, BN, ReLU.
self.b = nn.Conv3d(
dim_inner,
dim_inner,
[self.temp_kernel_size, 3, 3],
stride=[1, str3x3, str3x3],
padding=[int(self.temp_kernel_size // 2), dilation, dilation],
groups=num_groups,
bias=False,
dilation=[1, dilation, dilation],
)
self.b_bn = norm_module(
num_features=dim_inner, eps=self._eps, momentum=self._bn_mmt
)
# Apply SE attention or not
use_se = True if (self._block_idx + 1) % 2 else False
if self._se_ratio > 0.0 and use_se:
self.se = SE(dim_inner, self._se_ratio)
if self._swish_inner:
self.b_relu = Swish()
else:
self.b_relu = nn.ReLU(inplace=self._inplace_relu)
# 1x1x1, BN.
self.c = nn.Conv3d(
dim_inner,
dim_out,
kernel_size=[1, 1, 1],
stride=[1, 1, 1],
padding=[0, 0, 0],
bias=False,
)
self.c_bn = norm_module(
num_features=dim_out, eps=self._eps, momentum=self._bn_mmt
)
self.c_bn.transform_final_bn = True
def forward(self, x):
for block in self.children():
x = block(x)
return x
class BottleneckTransform(nn.Module):
"""
Bottleneck transformation: Tx1x1, 1x3x3, 1x1x1, where T is the size of
temporal kernel.
"""
def __init__(
self,
dim_in,
dim_out,
temp_kernel_size,
stride,
dim_inner,
num_groups,
stride_1x1=False,
inplace_relu=True,
eps=1e-5,
bn_mmt=0.1,
dilation=1,
norm_module=nn.BatchNorm3d,
block_idx=0,
):
"""
Args:
dim_in (int): the channel dimensions of the input.
dim_out (int): the channel dimension of the output.
temp_kernel_size (int): the temporal kernel sizes of the first
convolution in the bottleneck.
stride (int): the stride of the bottleneck.
dim_inner (int): the inner dimension of the block.
num_groups (int): number of groups for the convolution. num_groups=1
is for standard ResNet like networks, and num_groups>1 is for
ResNeXt like networks.
stride_1x1 (bool): if True, apply stride to 1x1 conv, otherwise
apply stride to the 3x3 conv.
inplace_relu (bool): if True, calculate the relu on the original
input without allocating new memory.
eps (float): epsilon for batch norm.
bn_mmt (float): momentum for batch norm. Noted that BN momentum in
PyTorch = 1 - BN momentum in Caffe2.
dilation (int): size of dilation.
norm_module (nn.Module): nn.Module for the normalization layer. The
default is nn.BatchNorm3d.
"""
super(BottleneckTransform, self).__init__()
self.temp_kernel_size = temp_kernel_size
self._inplace_relu = inplace_relu
self._eps = eps
self._bn_mmt = bn_mmt
self._stride_1x1 = stride_1x1
self._construct(
dim_in,
dim_out,
stride,
dim_inner,
num_groups,
dilation,
norm_module,
)
def _construct(
self,
dim_in,
dim_out,
stride,
dim_inner,
num_groups,
dilation,
norm_module,
):
(str1x1, str3x3) = (stride, 1) if self._stride_1x1 else (1, stride)
# Tx1x1, BN, ReLU.
self.a = nn.Conv3d(
dim_in,
dim_inner,
kernel_size=[self.temp_kernel_size, 1, 1],
stride=[1, str1x1, str1x1],
padding=[int(self.temp_kernel_size // 2), 0, 0],
bias=False,
)
self.a_bn = norm_module(
num_features=dim_inner, eps=self._eps, momentum=self._bn_mmt
)
self.a_relu = nn.ReLU(inplace=self._inplace_relu)
# 1x3x3, BN, ReLU.
self.b = nn.Conv3d(
dim_inner,
dim_inner,
[1, 3, 3],
stride=[1, str3x3, str3x3],
padding=[0, dilation, dilation],
groups=num_groups,
bias=False,
dilation=[1, dilation, dilation],
)
self.b_bn = norm_module(
num_features=dim_inner, eps=self._eps, momentum=self._bn_mmt
)
self.b_relu = nn.ReLU(inplace=self._inplace_relu)
# 1x1x1, BN.
self.c = nn.Conv3d(
dim_inner,
dim_out,
kernel_size=[1, 1, 1],
stride=[1, 1, 1],
padding=[0, 0, 0],
bias=False,
)
self.c.final_conv = True
self.c_bn = norm_module(
num_features=dim_out, eps=self._eps, momentum=self._bn_mmt
)
self.c_bn.transform_final_bn = True
def forward(self, x):
# Explicitly forward every layer.
# Branch2a.
x = self.a(x)
x = self.a_bn(x)
x = self.a_relu(x)
# Branch2b.
x = self.b(x)
x = self.b_bn(x)
x = self.b_relu(x)
# Branch2c
x = self.c(x)
x = self.c_bn(x)
return x
class ResBlock(nn.Module):
"""
Residual block.
"""
def __init__(
self,
dim_in,
dim_out,
temp_kernel_size,
stride,
trans_func,
dim_inner,
num_groups=1,
stride_1x1=False,
inplace_relu=True,
eps=1e-5,
bn_mmt=0.1,
dilation=1,
norm_module=nn.BatchNorm3d,
block_idx=0,
drop_connect_rate=0.0,
):
"""
ResBlock class constructs redisual blocks. More details can be found in:
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
"Deep residual learning for image recognition."
https://arxiv.org/abs/1512.03385
Args:
dim_in (int): the channel dimensions of the input.
dim_out (int): the channel dimension of the output.
temp_kernel_size (int): the temporal kernel sizes of the middle
convolution in the bottleneck.
stride (int): the stride of the bottleneck.
trans_func (string): transform function to be used to construct the
bottleneck.
dim_inner (int): the inner dimension of the block.
num_groups (int): number of groups for the convolution. num_groups=1
is for standard ResNet like networks, and num_groups>1 is for
ResNeXt like networks.
stride_1x1 (bool): if True, apply stride to 1x1 conv, otherwise
apply stride to the 3x3 conv.
inplace_relu (bool): calculate the relu on the original input
without allocating new memory.
eps (float): epsilon for batch norm.
bn_mmt (float): momentum for batch norm. Noted that BN momentum in
PyTorch = 1 - BN momentum in Caffe2.
dilation (int): size of dilation.
norm_module (nn.Module): nn.Module for the normalization layer. The
default is nn.BatchNorm3d.
drop_connect_rate (float): basic rate at which blocks are dropped,
linearly increases from input to output blocks.
"""
super(ResBlock, self).__init__()
self._inplace_relu = inplace_relu
self._eps = eps
self._bn_mmt = bn_mmt
self._drop_connect_rate = drop_connect_rate
self._construct(
dim_in,
dim_out,
temp_kernel_size,
stride,
trans_func,
dim_inner,
num_groups,
stride_1x1,
inplace_relu,
dilation,
norm_module,
block_idx,
)
def _construct(
self,
dim_in,
dim_out,
temp_kernel_size,
stride,
trans_func,
dim_inner,
num_groups,
stride_1x1,
inplace_relu,
dilation,
norm_module,
block_idx,
):
# Use skip connection with projection if dim or res change.
if (dim_in != dim_out) or (stride != 1):
self.branch1 = nn.Conv3d(
dim_in,
dim_out,
kernel_size=1,
stride=[1, stride, stride],
padding=0,
bias=False,
dilation=1,
)
self.branch1_bn = norm_module(
num_features=dim_out, eps=self._eps, momentum=self._bn_mmt
)
self.branch2 = trans_func(
dim_in,
dim_out,
temp_kernel_size,
stride,
dim_inner,
num_groups,
stride_1x1=stride_1x1,
inplace_relu=inplace_relu,
dilation=dilation,
norm_module=norm_module,
block_idx=block_idx,
)
self.relu = nn.ReLU(self._inplace_relu)
def forward(self, x):
f_x = self.branch2(x)
if self.training and self._drop_connect_rate > 0.0:
f_x = drop_path(f_x, self._drop_connect_rate)
if hasattr(self, "branch1"):
x = self.branch1_bn(self.branch1(x)) + f_x
else:
x = x + f_x
x = self.relu(x)
return x
class ResStage(nn.Module):
"""
Stage of 3D ResNet. It expects to have one or more tensors as input for
single pathway (C2D, I3D, Slow), and multi-pathway (SlowFast) cases.
More details can be found here:
Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He.
"SlowFast networks for video recognition."
https://arxiv.org/pdf/1812.03982.pdf
"""
def __init__(
self,
dim_in,
dim_out,
stride,
temp_kernel_sizes,
num_blocks,
dim_inner,
num_groups,
num_block_temp_kernel,
nonlocal_inds,
nonlocal_group,
nonlocal_pool,
dilation,
instantiation="softmax",
trans_func_name="bottleneck_transform",
stride_1x1=False,
inplace_relu=True,
norm_module=nn.BatchNorm3d,
drop_connect_rate=0.0,
):
"""
The `__init__` method of any subclass should also contain these arguments.
ResStage builds p streams, where p can be greater or equal to one.
Args:
dim_in (list): list of p the channel dimensions of the input.
Different channel dimensions control the input dimension of
different pathways.
dim_out (list): list of p the channel dimensions of the output.
Different channel dimensions control the input dimension of
different pathways.
temp_kernel_sizes (list): list of the p temporal kernel sizes of the
convolution in the bottleneck. Different temp_kernel_sizes
control different pathway.
stride (list): list of the p strides of the bottleneck. Different
stride control different pathway.
num_blocks (list): list of p numbers of blocks for each of the
pathway.
dim_inner (list): list of the p inner channel dimensions of the
input. Different channel dimensions control the input dimension
of different pathways.
num_groups (list): list of number of p groups for the convolution.
num_groups=1 is for standard ResNet like networks, and
num_groups>1 is for ResNeXt like networks.
num_block_temp_kernel (list): extent the temp_kernel_sizes to
num_block_temp_kernel blocks, then fill temporal kernel size
of 1 for the rest of the layers.
nonlocal_inds (list): If the tuple is empty, no nonlocal layer will
be added. If the tuple is not empty, add nonlocal layers after
the index-th block.
dilation (list): size of dilation for each pathway.
nonlocal_group (list): list of number of p nonlocal groups. Each
number controls how to fold temporal dimension to batch
dimension before applying nonlocal transformation.
https://github.com/facebookresearch/video-nonlocal-net.
instantiation (string): different instantiation for nonlocal layer.
Supports two different instantiation method:
"dot_product": normalizing correlation matrix with L2.
"softmax": normalizing correlation matrix with Softmax.
trans_func_name (string): name of the the transformation function apply
on the network.
norm_module (nn.Module): nn.Module for the normalization layer. The
default is nn.BatchNorm3d.
drop_connect_rate (float): basic rate at which blocks are dropped,
linearly increases from input to output blocks.
"""
super(ResStage, self).__init__()
assert all(
(
num_block_temp_kernel[i] <= num_blocks[i]
for i in range(len(temp_kernel_sizes))
)
)
self.num_blocks = num_blocks
self.nonlocal_group = nonlocal_group
self._drop_connect_rate = drop_connect_rate
self.temp_kernel_sizes = [
(temp_kernel_sizes[i] * num_blocks[i])[: num_block_temp_kernel[i]]
+ [1] * (num_blocks[i] - num_block_temp_kernel[i])
for i in range(len(temp_kernel_sizes))
]
assert (
len(
{
len(dim_in),
len(dim_out),
len(temp_kernel_sizes),
len(stride),
len(num_blocks),
len(dim_inner),
len(num_groups),
len(num_block_temp_kernel),
len(nonlocal_inds),
len(nonlocal_group),
}
)
== 1
)
self.num_pathways = len(self.num_blocks)
self._construct(
dim_in,
dim_out,
stride,
dim_inner,
num_groups,
trans_func_name,
stride_1x1,
inplace_relu,
nonlocal_inds,
nonlocal_pool,
instantiation,
dilation,
norm_module,
)
def _construct(
self,
dim_in,
dim_out,
stride,
dim_inner,
num_groups,
trans_func_name,
stride_1x1,
inplace_relu,
nonlocal_inds,
nonlocal_pool,
instantiation,
dilation,
norm_module,
):
for pathway in range(self.num_pathways):
for i in range(self.num_blocks[pathway]):
# Retrieve the transformation function.
trans_func = get_trans_func(trans_func_name)
# Construct the block.
res_block = ResBlock(
dim_in[pathway] if i == 0 else dim_out[pathway],
dim_out[pathway],
self.temp_kernel_sizes[pathway][i],
stride[pathway] if i == 0 else 1,
trans_func,
dim_inner[pathway],
num_groups[pathway],
stride_1x1=stride_1x1,
inplace_relu=inplace_relu,
dilation=dilation[pathway],
norm_module=norm_module,
block_idx=i,
drop_connect_rate=self._drop_connect_rate,
)
self.add_module("pathway{}_res{}".format(
pathway, i), res_block)
if i in nonlocal_inds[pathway]:
nln = Nonlocal(
dim_out[pathway],
dim_out[pathway] // 2,
nonlocal_pool[pathway],
instantiation=instantiation,
norm_module=norm_module,
)
self.add_module(
"pathway{}_nonlocal{}".format(pathway, i), nln)
def forward(self, inputs):
output = []
for pathway in range(self.num_pathways):
x = inputs[pathway]
for i in range(self.num_blocks[pathway]):
m = getattr(self, "pathway{}_res{}".format(pathway, i))
x = m(x)
if hasattr(self, "pathway{}_nonlocal{}".format(pathway, i)):
nln = getattr(
self, "pathway{}_nonlocal{}".format(pathway, i))
b, c, t, h, w = x.shape
if self.nonlocal_group[pathway] > 1:
# Fold temporal dimension into batch dimension.
x = x.permute(0, 2, 1, 3, 4)
x = x.reshape(
b * self.nonlocal_group[pathway],
t // self.nonlocal_group[pathway],
c,
h,
w,
)
x = x.permute(0, 2, 1, 3, 4)
x = nln(x)
if self.nonlocal_group[pathway] > 1:
# Fold back to temporal dimension.
x = x.permute(0, 2, 1, 3, 4)
x = x.reshape(b, t, c, h, w)
x = x.permute(0, 2, 1, 3, 4)
output.append(x)
return output
|