File size: 6,651 Bytes
857d49a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
---
language: en
license: cc-by-sa-4.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
metrics:
- precision
- recall
- f1
widget:
- text: Altitude measurements based on near - IR imaging in H and Hcont filters showed
    that the deeper BS2 clouds were located near the methane condensation level (
    ≈1.2bars ) , while BS1 was generally ∼500 mb above that level ( at lower pressures
    ) .
- text: However , our model predicts different performance for large enough memory
    - access latency and validates the intuition that the dynamic programming algorithm
    performs better on these machines .
- text: We established a P fertilizer need map based on integrating results from the
    two systems .
- text: Here , we have addressed this limitation for the endodermal lineage by developing
    a defined culture system to expand and differentiate human foregut stem cells
    ( hFSCs ) derived from hPSCs . hFSCs can self - renew while maintaining their
    capacity to differentiate into pancreatic and hepatic cells .
- text: The accumulated percentage gain from selection amounted to 51%/1 % lower Striga
    infestation ( measured by area under Striga number progress curve , ASNPC ) ,
    46%/62 % lower downy mildew incidence , and 49%/31 % higher panicle yield of the
    C5 - FS compared to the mean of the genepool parents at Sadoré / Cinzana , respectively
    .
pipeline_tag: token-classification
base_model: malteos/scincl
model-index:
- name: SpanMarker with malteos/scincl on my-data
  results:
  - task:
      type: token-classification
      name: Named Entity Recognition
    dataset:
      name: my-data
      type: unknown
      split: test
    metrics:
    - type: f1
      value: 0.7043189368770764
      name: F1
    - type: precision
      value: 0.7198641765704584
      name: Precision
    - type: recall
      value: 0.6894308943089431
      name: Recall
---

# SpanMarker with malteos/scincl on my-data

This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition. This SpanMarker model uses [malteos/scincl](https://huggingface.co/malteos/scincl) as the underlying encoder.

## Model Details

### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [malteos/scincl](https://huggingface.co/malteos/scincl)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
- **Language:** en
- **License:** cc-by-sa-4.0

### Model Sources

- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)

### Model Labels
| Label    | Examples                                                                                                |
|:---------|:--------------------------------------------------------------------------------------------------------|
| Data     | "an overall mitochondrial", "defect", "Depth time - series"                                             |
| Material | "cross - shore measurement locations", "the subject 's fibroblasts", "COXI , COXII and COXIII subunits" |
| Method   | "EFSA", "an approximation", "in vitro"                                                                  |
| Process  | "translation", "intake", "a significant reduction of synthesis"                                         |

## Evaluation

### Metrics
| Label    | Precision | Recall | F1     |
|:---------|:----------|:-------|:-------|
| **all**  | 0.7199    | 0.6894 | 0.7043 |
| Data     | 0.6224    | 0.6455 | 0.6338 |
| Material | 0.8061    | 0.7861 | 0.7960 |
| Method   | 0.5789    | 0.55   | 0.5641 |
| Process  | 0.7472    | 0.6488 | 0.6945 |

## Uses

### Direct Use for Inference

```python
from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span-marker-malteos/scincl-me")
# Run inference
entities = model.predict("We established a P fertilizer need map based on integrating results from the two systems .")
```

### Downstream Use
You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

```python
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span-marker-malteos/scincl-me")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span-marker-malteos/scincl-me-finetuned")
```
</details>

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set          | Min | Median  | Max |
|:----------------------|:----|:--------|:----|
| Sentence length       | 3   | 25.6049 | 106 |
| Entities per sentence | 0   | 5.2439  | 22  |

### Training Hyperparameters
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Framework Versions
- Python: 3.10.12
- SpanMarker: 1.5.0
- Transformers: 4.36.2
- PyTorch: 2.0.1+cu118
- Datasets: 2.16.1
- Tokenizers: 0.15.0

## Citation

### BibTeX
```
@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->