zer0int commited on
Commit
5f19dde
Β·
verified Β·
1 Parent(s): 63d6f69

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -7
README.md CHANGED
@@ -32,15 +32,23 @@ Truncate to 77 tokens
32
  tensor([[0.16484, 0.0749, 0.1618, 0.0774]], device='cuda:0') πŸ“‰
33
  ```
34
  # πŸ‘‡
35
- # Option 2 (edit Transformers) πŸ’– RECOMMENDED πŸ’–:
36
 
37
- - πŸ‘‰ Find the line that says `max_position_embeddings=77,` in `[System Python]/site-packages/transformers/models/clip/configuration_clip.py`
38
- - πŸ‘‰ Change to: `max_position_embeddings=248,`
39
 
40
- # Now, in your inference code, for text:
41
- - `text_input = processor([your-prompt-or-prompts-as-usual], padding="max_length", max_length=248)`
42
- - or:
43
- - `text_input = processor([your-prompt-or-prompts-as-usual], padding="True")`
 
 
 
 
 
 
 
 
44
 
45
  ```
46
  # Resulting Cosine Similarities for 248 tokens padded:
 
32
  tensor([[0.16484, 0.0749, 0.1618, 0.0774]], device='cuda:0') πŸ“‰
33
  ```
34
  # πŸ‘‡
35
+ # Option 2, proper integration: πŸ’– RECOMMENDED πŸ’–
36
 
37
+ - ### Solution for implementation of 248 tokens / thanks [@kk3dmax ](https://huggingface.co/zer0int/LongCLIP-GmP-ViT-L-14/discussions/3) πŸ€—
38
+ - Obtain a full example script using this solution for Flux.1 inference on [my GitHub](https://github.com/zer0int/CLIP-txt2img-diffusers-scripts)
39
 
40
+ ```
41
+ model_id = ("zer0int/LongCLIP-GmP-ViT-L-14")
42
+ config = CLIPConfig.from_pretrained(model_id)
43
+ config.text_config.max_position_embeddings = 248
44
+ clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=dtype, config=config)
45
+ clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=248)
46
+
47
+ pipe.tokenizer = clip_processor.tokenizer # Replace with the CLIP tokenizer
48
+ pipe.text_encoder = clip_model.text_model # Replace with the CLIP text encoder
49
+ pipe.tokenizer_max_length = 248
50
+ pipe.text_encoder.dtype = torch.bfloat16
51
+ ```
52
 
53
  ```
54
  # Resulting Cosine Similarities for 248 tokens padded: