# -*- coding: utf-8 -*- from datasets import load_from_disk from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer, Trainer) import fla # noqa from flame.data import DataCollatorForLanguageModeling from flame.logging import LogCallback, get_logger from flame.parser import get_train_args logger = get_logger(__name__) def main(): args = get_train_args() logger.info(args) tokenizer = AutoTokenizer.from_pretrained( args.tokenizer, use_fast=args.use_fast_tokenizer, trust_remote_code=True, add_bos_token=True, add_eos_token=False ) if tokenizer.pad_token_id is None: tokenizer.pad_token = tokenizer.eos_token logger.info("Add pad token: {}".format(tokenizer.pad_token)) if args.from_config: logger.info("All model params are randomly initialized for from-scratch training.") model = AutoModelForCausalLM.from_config(AutoConfig.from_pretrained(args.model_name_or_path)) else: logger.info(f"Loading pretrained checkpoint {args.model_name_or_path}") model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path) model.train() trainable_params, all_param = model.num_parameters(only_trainable=True), model.num_parameters() logger.info(f"% of trainable params: {trainable_params:d} / {all_param:d} = {trainable_params / all_param:.2%}") logger.info(f"{tokenizer}\n{model}\n{model.config}") logger.info(f"Loading the `{args.split}` split directly from the cache {args.cache_dir}...") dataset = load_from_disk(args.cache_dir) logger.info(f"{dataset}") logger.info(f"Shuffling the dataset with seed {args.seed}") dataset = dataset.shuffle(seed=args.seed) data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer) if args.lr_scheduler_type == 'cosine_with_min_lr': args.lr_scheduler_kwargs = {'min_lr_rate': 0.1} if args.lr_scheduler_type == 'warmup_stable_decay': args.lr_scheduler_kwargs = { 'num_stable_steps': args.max_steps * 0.9 - args.warmup_steps, 'num_decay_steps': args.max_steps * 0.1 } trainer = Trainer( model=model, args=args, tokenizer=tokenizer, data_collator=data_collator, callbacks=[LogCallback()], train_dataset=dataset ) results = trainer.train(resume_from_checkpoint=args.resume_from_checkpoint) trainer.save_model() tokenizer.save_pretrained(trainer.args.output_dir) trainer.log_metrics("train", results.metrics) trainer.save_metrics("train", results.metrics) trainer.save_state() if __name__ == "__main__": main()