|
|
|
|
|
from datasets import load_from_disk |
|
from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer, |
|
Trainer) |
|
|
|
import fla |
|
from flame.data import DataCollatorForLanguageModeling |
|
from flame.logging import LogCallback, get_logger |
|
from flame.parser import get_train_args |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def main(): |
|
args = get_train_args() |
|
logger.info(args) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
args.tokenizer, |
|
use_fast=args.use_fast_tokenizer, |
|
trust_remote_code=True, |
|
add_bos_token=True, |
|
add_eos_token=False |
|
) |
|
if tokenizer.pad_token_id is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
logger.info("Add pad token: {}".format(tokenizer.pad_token)) |
|
if args.from_config: |
|
logger.info("All model params are randomly initialized for from-scratch training.") |
|
model = AutoModelForCausalLM.from_config(AutoConfig.from_pretrained(args.model_name_or_path)) |
|
else: |
|
logger.info(f"Loading pretrained checkpoint {args.model_name_or_path}") |
|
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path) |
|
model.train() |
|
|
|
trainable_params, all_param = model.num_parameters(only_trainable=True), model.num_parameters() |
|
logger.info(f"% of trainable params: {trainable_params:d} / {all_param:d} = {trainable_params / all_param:.2%}") |
|
logger.info(f"{tokenizer}\n{model}\n{model.config}") |
|
|
|
logger.info(f"Loading the `{args.split}` split directly from the cache {args.cache_dir}...") |
|
dataset = load_from_disk(args.cache_dir) |
|
logger.info(f"{dataset}") |
|
logger.info(f"Shuffling the dataset with seed {args.seed}") |
|
dataset = dataset.shuffle(seed=args.seed) |
|
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer) |
|
|
|
if args.lr_scheduler_type == 'cosine_with_min_lr': |
|
args.lr_scheduler_kwargs = {'min_lr_rate': 0.1} |
|
if args.lr_scheduler_type == 'warmup_stable_decay': |
|
args.lr_scheduler_kwargs = { |
|
'num_stable_steps': args.max_steps * 0.9 - args.warmup_steps, |
|
'num_decay_steps': args.max_steps * 0.1 |
|
} |
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=args, |
|
tokenizer=tokenizer, |
|
data_collator=data_collator, |
|
callbacks=[LogCallback()], |
|
train_dataset=dataset |
|
) |
|
|
|
results = trainer.train(resume_from_checkpoint=args.resume_from_checkpoint) |
|
trainer.save_model() |
|
tokenizer.save_pretrained(trainer.args.output_dir) |
|
|
|
trainer.log_metrics("train", results.metrics) |
|
trainer.save_metrics("train", results.metrics) |
|
trainer.save_state() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|