yuki-2000 commited on
Commit
b6c49d0
·
verified ·
1 Parent(s): b60b53c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -147
README.md CHANGED
@@ -1,6 +1,11 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
@@ -17,183 +22,131 @@ tags: []
17
 
18
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
 
 
 
 
 
 
 
 
 
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
 
 
 
 
 
 
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
 
 
 
 
 
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
 
 
 
 
 
 
178
 
179
- **APA:**
 
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
186
 
187
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
188
 
189
- ## More Information [optional]
 
 
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
 
 
194
 
195
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ datasets:
4
+ - weblab-GENIAC/aya-ja-evol-instruct-calm3-dpo-masked
5
+ language:
6
+ - ja
7
+ base_model:
8
+ - llm-jp/llm-jp-3-13b
9
  ---
10
 
11
  # Model Card for Model ID
 
22
 
23
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
24
 
25
+ - **Developed by:** yuki-2000
26
+ - **Model type:** LLM
27
+ - **Language(s) (NLP):** Japanese
28
+ - **License:** base_model:Apache License, Version 2.0, CC-BY-NC-SA datasets: Apache 2.0
29
+ - **Finetuned from model :** llm-jp/llm-jp-3-13b
 
 
30
 
 
31
 
 
 
 
 
 
32
 
33
  ## Uses
34
+ 実行の仕方は以下の通りです。 以下は、Model_Inference_Template_DPO_20241207.ipynbについて、モデルidのみを変えたものになっています。 omnicampus上での演習環境での使用を想定しています。
35
 
36
+ ```
37
+ !pip install -U ipywidgets
38
+ !pip install transformers
39
+ !pip install -U bitsandbytes
40
+ !pip install -U accelerate
41
+ !pip install -U datasets
42
+ !pip install -U peft
43
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
 
45
 
46
+ ```python
47
+ from transformers import (
48
+ AutoModelForCausalLM,
49
+ AutoTokenizer,
50
+ BitsAndBytesConfig,
51
+ )
52
+ from peft import PeftModel
53
+ import torch
54
+ from tqdm import tqdm
55
+ import json
56
 
 
57
 
 
58
 
59
+ # Hugging Faceで取得したTokenをこちらに貼る。
60
+ HF_TOKEN = "your_token"
 
 
 
61
 
 
62
 
 
63
 
 
64
 
65
+ # ベースとなるモデルと学習したLoRAのアダプタ。
66
+ # model_idの値はomnicampusの環境におけるモデルのパスを表しており、それ以外の環境で実行する場合は変更の必要があります。
67
+ model_id = "models/models--llm-jp--llm-jp-3-13b/snapshots/cd3823f4c1fcbb0ad2e2af46036ab1b0ca13192a"
68
+ # omnicampus以外の環境をご利用の方は以下をご利用ください。
69
+ # base_model_id = "llm-jp/llm-jp-3-13b"
70
+ adapter_id = "yuki-2000/llm-jp-3-13b-finetune5" # こちらにアップロードしたLoRAアダプタのHugging FaceのIDを指定してください。
71
+ adapter_dpo_id = "yuki-2000/llm-jp-3-13b-finetune5-dpo7" # こちらにアップロードしたDPOアダプタのHugging FaceのIDを指定してください。
72
 
 
73
 
 
74
 
 
75
 
76
+ # QLoRA config
77
+ bnb_config = BitsAndBytesConfig(
78
+ load_in_4bit=True,
79
+ bnb_4bit_quant_type="nf4",
80
+ bnb_4bit_compute_dtype=torch.bfloat16,
81
+ )
82
 
 
83
 
 
84
 
 
85
 
 
86
 
87
+ # Load model
88
+ model = AutoModelForCausalLM.from_pretrained(
89
+ model_id,
90
+ quantization_config=bnb_config,
91
+ device_map="auto",
92
+ token = HF_TOKEN
93
+ )
94
 
95
+ # Load tokenizer
96
+ tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN)
97
 
 
98
 
99
+ # 元のモデルにLoRAのアダプタを統合。
100
+ model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
101
 
102
+ # LoRAのモデルにDPOのアダプタを統合。
103
+ model = PeftModel.from_pretrained(model, adapter_dpo_id, token = HF_TOKEN)
104
 
105
+ # データセットの読み込み。
106
+ # omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
107
+ datasets = []
108
+ with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
109
+ item = ""
110
+ for line in f:
111
+ line = line.strip()
112
+ item += line
113
+ if item.endswith("}"):
114
+ datasets.append(json.loads(item))
115
+ item = ""
116
 
117
+ # llmjp
118
+ results = []
119
+ for data in tqdm(datasets):
120
 
121
+ input = data["input"]
122
 
123
+ prompt = f"""### 指示
124
+ {input}
125
+ ### 回答
126
+ """
127
 
128
+ tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
129
+ attention_mask = torch.ones_like(tokenized_input)
130
+ with torch.no_grad():
131
+ outputs = model.generate(
132
+ tokenized_input,
133
+ attention_mask=attention_mask,
134
+ max_new_tokens=100,
135
+ do_sample=False,
136
+ repetition_penalty=1.2,
137
+ pad_token_id=tokenizer.eos_token_id
138
+ )[0]
139
+ output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
140
 
141
+ results.append({"task_id": data["task_id"], "input": input, "output": output})
142
 
143
+ # こちらで生成されたjsolを提出してください。
144
+ # 本コードではinputも含んでいますが、なくても問題ありません。
145
+ # 必須なのはtask_idとoutputとなります。
146
+ import re
147
+ jsonl_id = re.sub(".*/", "", adapter_dpo_id)
148
+ with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
149
+ for result in results:
150
+ json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
151
+ f.write('\n')
152
+ ```