File size: 4,127 Bytes
038c7fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
'''
Tested on: transformers==4.38.1, autoawq=0.2.3
Run on 1 card (mem>=18G)
'''

import torch

from awq.quantize.quantizer import AwqQuantizer
from awq.quantize.quantizer import *
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer
from unittest.mock import patch


class FalconAwqQuantizer(AwqQuantizer):
    def quantize(self):
        print('Patched!')
        for i in tqdm(range(len(self.modules)), desc="AWQ"):
            # Move module and inputs to correct device
            common_device = next(self.modules[i].parameters()).device
            if common_device is None or str(common_device) == "cpu":
                if torch.cuda.is_available():
                    best_device = "cuda:" + str(i % torch.cuda.device_count())
                else:
                    best_device = get_best_device()

                self.modules[i] = self.modules[i].to(best_device)
                common_device = next(self.modules[i].parameters()).device

            if self.module_kwargs.get("position_ids") is not None:
                self.module_kwargs["position_ids"] = self.module_kwargs[
                    "position_ids"
                ].to(common_device)

            if self.module_kwargs.get("attention_mask") is not None:
                self.module_kwargs["attention_mask"] = self.module_kwargs[
                    "attention_mask"
                ].to(common_device)

            # include alibi
            if self.module_kwargs.get("alibi") is not None:
                self.module_kwargs["alibi"] = self.module_kwargs[
                    "alibi"
                ].to(common_device)
            else:
                self.module_kwargs['alibi'] = None
                print(f'alibi=None in layer {i}, this is expected if use_alibi=False.')

            self.inps = self.inps.to(common_device)

            # [STEP 1]: Get layer, extract linear modules, extract input features
            named_linears = get_named_linears(self.modules[i])

            # Filter out the linear layers we don't want to exclude
            named_linears = exclude_layers_to_not_quantize(
                named_linears, self.modules_to_not_convert
            )

            input_feat = self._get_input_feat(self.modules[i], named_linears)
            clear_memory()

            # [STEP 2]: Compute and apply scale list
            module_config: List[Dict] = self.awq_model.get_layers_for_scaling(
                self.modules[i], input_feat, self.module_kwargs
            )
            scales_list = [
                self._search_best_scale(self.modules[i], **layer)
                for layer in module_config
            ]
            apply_scale(self.modules[i], scales_list, input_feat_dict=input_feat)
            scales_list = append_str_prefix(
                scales_list, get_op_name(self.model, self.modules[i]) + "."
            )

            # [STEP 3]: Compute and apply clipping list
            clip_list = self._search_best_clip(
                self.modules[i], named_linears, input_feat
            )
            apply_clip(self.modules[i], clip_list)
            clip_list = append_str_prefix(
                clip_list, get_op_name(self.model, self.modules[i]) + "."
            )

            # [STEP 4]: Quantize weights
            if not self.export_compatible:
                self._apply_quant(self.modules[i], named_linears)

            clear_memory()


model_path = 'tiiuae/falcon-40b'
# model_path = 'yujiepan/falcon-new-tiny-random'
quant_path = 'falcon-40b-autoawq-w4g128'
quant_config = {"zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM"}


# Load model
model = AutoAWQForCausalLM.from_pretrained(
    model_path, device_map='cpu', trust_remote_code=False, **{"low_cpu_mem_usage": True, "use_cache": False}
)
tokenizer = AutoTokenizer.from_pretrained(model_path)

# Quantize
with patch('awq.models.base.AwqQuantizer', FalconAwqQuantizer):
    model.quantize(tokenizer, quant_config=quant_config)

# Save quantized model
model.save_quantized(quant_path)
tokenizer.save_pretrained(quant_path)

print(f'Model is quantized and saved at "{quant_path}"')