File size: 3,996 Bytes
e165779 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
---
language: en
library_name: bm25s
tags:
- bm25
- bm25s
- retrieval
- search
- lexical
---
# BM25S Index
This is a BM25S index created with the [`bm25s` library](https://github.com/xhluca/bm25s) (version `0.2.3`), an ultra-fast implementation of BM25. It can be used for lexical retrieval tasks.
BM25S Related Links:
* 🏠[Homepage](https://bm25s.github.io)
* 💻[GitHub Repository](https://github.com/xhluca/bm25s)
* 🤗[Blog Post](https://huggingface.co/blog/xhluca/bm25s)
* 📝[Technical Report](https://arxiv.org/abs/2407.03618)
## Installation
You can install the `bm25s` library with `pip`:
```bash
pip install "bm25s==0.2.3"
# Include extra dependencies like stemmer
pip install "bm25s[full]==0.2.3"
# For huggingface hub usage
pip install huggingface_hub
```
## Loading a `bm25s` index
You can use this index for information retrieval tasks. Here is an example:
```python
import bm25s
from bm25s.hf import BM25HF
# Load the index
retriever = BM25HF.load_from_hub("ylkhayat/bm25s-caselaw-us-and-veterans")
# You can retrieve now
query = "a cat is a feline"
results = retriever.retrieve(bm25s.tokenize(query), k=3)
```
## Saving a `bm25s` index
You can save a `bm25s` index to the Hugging Face Hub. Here is an example:
```python
import bm25s
from bm25s.hf import BM25HF
corpus = [
"a cat is a feline and likes to purr",
"a dog is the human's best friend and loves to play",
"a bird is a beautiful animal that can fly",
"a fish is a creature that lives in water and swims",
]
retriever = BM25HF(corpus=corpus)
retriever.index(bm25s.tokenize(corpus))
token = None # You can get a token from the Hugging Face website
retriever.save_to_hub("ylkhayat/bm25s-caselaw-us-and-veterans", token=token)
```
## Advanced usage
You can leverage more advanced features of the BM25S library during `load_from_hub`:
```python
# Load corpus and index in memory-map (mmap=True) to reduce memory
retriever = BM25HF.load_from_hub("ylkhayat/bm25s-caselaw-us-and-veterans", load_corpus=True, mmap=True)
# Load a different branch/revision
retriever = BM25HF.load_from_hub("ylkhayat/bm25s-caselaw-us-and-veterans", revision="main")
# Change directory where the local files should be downloaded
retriever = BM25HF.load_from_hub("ylkhayat/bm25s-caselaw-us-and-veterans", local_dir="/path/to/dir")
# Load private repositories with a token:
retriever = BM25HF.load_from_hub("ylkhayat/bm25s-caselaw-us-and-veterans", token=token)
```
## Tokenizer
If you have saved a `Tokenizer` object with the index using the following approach:
```python
from bm25s.hf import TokenizerHF
token = "your_hugging_face_token"
tokenizer = TokenizerHF(corpus=corpus, stopwords="english")
tokenizer.save_to_hub("ylkhayat/bm25s-caselaw-us-and-veterans", token=token)
# and stopwords too
tokenizer.save_stopwords_to_hub("ylkhayat/bm25s-caselaw-us-and-veterans", token=token)
```
Then, you can load the tokenizer using the following code:
```python
from bm25s.hf import TokenizerHF
tokenizer = TokenizerHF(corpus=corpus, stopwords=[])
tokenizer.load_vocab_from_hub("ylkhayat/bm25s-caselaw-us-and-veterans", token=token)
tokenizer.load_stopwords_from_hub("ylkhayat/bm25s-caselaw-us-and-veterans", token=token)
```
## Stats
This dataset was created using the following data:
| Statistic | Value |
| --- | --- |
| Number of documents | 366752 |
| Number of tokens | 57736416 |
| Average tokens per document | 157.43 |
## Parameters
The index was created with the following parameters:
| Parameter | Value |
| --- | --- |
| k1 | `1.5` |
| b | `0.75` |
| delta | `0.5` |
| method | `lucene` |
| idf method | `lucene` |
## Citation
To cite `bm25s`, please use the following bibtex:
```
@misc{lu_2024_bm25s,
title={BM25S: Orders of magnitude faster lexical search via eager sparse scoring},
author={Xing Han Lù},
year={2024},
eprint={2407.03618},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2407.03618},
}
```
|