Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
pipeline_tag: text-to-speech
|
4 |
+
tags:
|
5 |
+
- transformers.js
|
6 |
+
- mms
|
7 |
+
- vits
|
8 |
+
license: cc-by-nc-4.0
|
9 |
+
datasets:
|
10 |
+
- ylacombe/google-tamil
|
11 |
+
language:
|
12 |
+
- es
|
13 |
+
---
|
14 |
+
|
15 |
+
## Model
|
16 |
+
|
17 |
+
This is a finetuned version of the [Tamil version](https://huggingface.co/facebook/mms-tts-guj) of Massively Multilingual Speech (MMS) models, which are light-weight, low-latency TTS models based on the [VITS architecture](https://huggingface.co/docs/transformers/model_doc/vits).
|
18 |
+
|
19 |
+
It was trained in around **20 minutes** with as little as **80 to 150 samples**, on this [Tamil dataset](https://huggingface.co/datasets/ylacombe/google-tamil).
|
20 |
+
|
21 |
+
Training recipe available in this [github repository: **ylacombe/finetune-hf-vits**](https://github.com/ylacombe/finetune-hf-vits).
|
22 |
+
|
23 |
+
|
24 |
+
## Usage
|
25 |
+
|
26 |
+
### Transformers
|
27 |
+
|
28 |
+
```python
|
29 |
+
from transformers import pipeline
|
30 |
+
import scipy
|
31 |
+
|
32 |
+
model_id = "ylacombe/mms-guj-finetuned-monospeaker"
|
33 |
+
synthesiser = pipeline("text-to-speech", model_id) # add device=0 if you want to use a GPU
|
34 |
+
|
35 |
+
speech = synthesiser("Hola, 驴c贸mo est谩s hoy?")
|
36 |
+
|
37 |
+
scipy.io.wavfile.write("finetuned_output.wav", rate=speech["sampling_rate"], data=speech["audio"])
|
38 |
+
```
|
39 |
+
|
40 |
+
### Transformers.js
|
41 |
+
|
42 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
|
43 |
+
```bash
|
44 |
+
npm i @xenova/transformers
|
45 |
+
```
|
46 |
+
|
47 |
+
**Example:** Generate Tamil speech with `ylacombe/mms-guj-finetuned-monospeaker`.
|
48 |
+
```js
|
49 |
+
import { pipeline } from '@xenova/transformers';
|
50 |
+
|
51 |
+
// Create a text-to-speech pipeline
|
52 |
+
const synthesizer = await pipeline('text-to-speech', 'ylacombe/mms-guj-finetuned-monospeaker', {
|
53 |
+
quantized: false, // Remove this line to use the quantized version (default)
|
54 |
+
});
|
55 |
+
|
56 |
+
// Generate speech
|
57 |
+
const output = await synthesizer('Hola, 驴c贸mo est谩s hoy?');
|
58 |
+
console.log(output);
|
59 |
+
// {
|
60 |
+
// audio: Float32Array(69888) [ ... ],
|
61 |
+
// sampling_rate: 16000
|
62 |
+
// }
|
63 |
+
```
|
64 |
+
|
65 |
+
Optionally, save the audio to a wav file (Node.js):
|
66 |
+
```js
|
67 |
+
import wavefile from 'wavefile';
|
68 |
+
import fs from 'fs';
|
69 |
+
|
70 |
+
const wav = new wavefile.WaveFile();
|
71 |
+
wav.fromScratch(1, output.sampling_rate, '32f', output.audio);
|
72 |
+
fs.writeFileSync('out.wav', wav.toBuffer());
|
73 |
+
```
|