yjgjhgjh commited on
Commit
297bef1
·
verified ·
1 Parent(s): bcad7b6

Create Example Inferencing Script.py

Browse files
Files changed (1) hide show
  1. Example Inferencing Script.py +61 -0
Example Inferencing Script.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import os
4
+
5
+ def load_model_and_tokenizer(model_path):
6
+ # First, try loading from the directory
7
+ try:
8
+ print(f"Attempting to load model from directory: {model_path}")
9
+ model = AutoModelForCausalLM.from_pretrained(model_path)
10
+ except Exception as e:
11
+ print(f"Failed to load from directory. Error: {e}")
12
+ # If that fails, try loading the specific .safetensors file
13
+ safetensors_path = os.path.join(model_path, "model.safetensors")
14
+ if os.path.exists(safetensors_path):
15
+ print(f"Attempting to load model from file: {safetensors_path}")
16
+ model = AutoModelForCausalLM.from_pretrained(safetensors_path)
17
+ else:
18
+ raise ValueError(f"Could not find model at {model_path} or {safetensors_path}")
19
+
20
+ # Load the tokenizer from the original DistilGPT2 model
21
+ tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
22
+
23
+ return model, tokenizer
24
+
25
+ def generate_text(model, tokenizer, prompt, max_length=125, num_return_sequences=1):
26
+ input_ids = tokenizer.encode(prompt, return_tensors='pt')
27
+
28
+ # Generate text
29
+ output = model.generate(
30
+ input_ids,
31
+ max_length=max_length,
32
+ num_return_sequences=num_return_sequences,
33
+ no_repeat_ngram_size=6,
34
+ top_k=25,
35
+ top_p=0.99,
36
+ temperature=0.34
37
+ )
38
+
39
+ return [tokenizer.decode(seq, skip_special_tokens=True) for seq in output]
40
+
41
+ def main():
42
+ model_path = r"literalpathtothefoldernamed\checkpoint-4000" #change this to where you have the folder on your computer
43
+
44
+ print(f"Attempting to load model...")
45
+ model, tokenizer = load_model_and_tokenizer(model_path)
46
+
47
+ print("Model loaded successfully. Enter prompts to generate text. Type 'quit' to exit.")
48
+
49
+ while True:
50
+ prompt = input("Enter a prompt: ")
51
+ if prompt.lower() == 'quit':
52
+ break
53
+
54
+ generated_texts = generate_text(model, tokenizer, prompt)
55
+
56
+ print("\nGenerated Text:")
57
+ for i, text in enumerate(generated_texts, 1):
58
+ print(f"{i}. {text}\n")
59
+
60
+ if __name__ == "__main__":
61
+ main()