#!/bin/bash export HF_PROJECT="t5-v1.1-base-dutch-cased" export VOCAB_SIZE="32000" export N_INPUT_SENTENCES="1000000" # Num of sentences to train the tokenizer export DATASET="yhavinga/mc4_nl_cleaned" # Name of the dataset in the Huggingface Hub export DATASET_CONFIG="full" # Config of the dataset in the Huggingface Hub export DATASET_SPLIT="train" # Split to use for training tokenizer and model export TEXT_FIELD="text" # Field containing the text to be used for training export CONFIG_TYPE="google/t5-v1_1-base" # Config that our model will use export MODEL_PATH="${HOME}/data/${HF_PROJECT}" # Path to the model python run_t5_mlm_flax.py \ --output_dir="${MODEL_PATH}" \ --model_type="t5" \ --config_name="${MODEL_PATH}" \ --tokenizer_name="${MODEL_PATH}" \ --preprocessing_num_workers="96" \ --do_train --do_eval \ --dataset_name="${DATASET}" \ --dataset_config_name="${DATASET_CONFIG}" \ --max_seq_length="1024" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="8" \ --adafactor \ --learning_rate="0.005" \ --overwrite_output_dir \ --num_train_epochs="2" \ --logging_steps="500" \ --save_steps="80000" \ --eval_steps="2500" \ --weight_decay="0.001" \ --warmup_steps="10000" \ --validation_split_count="15000" \ --push_to_hub