File size: 4,285 Bytes
545869d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
base_model: google-bert/bert-large-uncased
library_name: peft
license: apache-2.0
metrics:
- accuracy
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: bert-large-uncased-swag
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-large-uncased-swag

This model is a fine-tuned version of [google-bert/bert-large-uncased](https://huggingface.co/google-bert/bert-large-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4643
- Accuracy: 0.8295

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Accuracy |
|:-------------:|:------:|:-----:|:---------------:|:--------:|
| 1.2132        | 0.1088 | 500   | 0.8717          | 0.6959   |
| 0.908         | 0.2175 | 1000  | 0.7149          | 0.7473   |
| 0.8353        | 0.3263 | 1500  | 0.6474          | 0.7575   |
| 0.8075        | 0.4351 | 2000  | 0.6142          | 0.7798   |
| 0.8011        | 0.5438 | 2500  | 0.5785          | 0.7867   |
| 0.7727        | 0.6526 | 3000  | 0.5643          | 0.7936   |
| 0.7647        | 0.7614 | 3500  | 0.5698          | 0.7956   |
| 0.7731        | 0.8701 | 4000  | 0.5453          | 0.8011   |
| 0.7489        | 0.9789 | 4500  | 0.5336          | 0.8052   |
| 0.7496        | 1.0877 | 5000  | 0.5431          | 0.8033   |
| 0.735         | 1.1964 | 5500  | 0.5231          | 0.8083   |
| 0.7194        | 1.3052 | 6000  | 0.5147          | 0.8096   |
| 0.7307        | 1.4140 | 6500  | 0.5102          | 0.8112   |
| 0.7355        | 1.5227 | 7000  | 0.5223          | 0.8133   |
| 0.7085        | 1.6315 | 7500  | 0.5054          | 0.8142   |
| 0.7206        | 1.7403 | 8000  | 0.5026          | 0.8157   |
| 0.7143        | 1.8490 | 8500  | 0.5126          | 0.8144   |
| 0.7045        | 1.9578 | 9000  | 0.5035          | 0.8162   |
| 0.6972        | 2.0666 | 9500  | 0.4948          | 0.8178   |
| 0.6885        | 2.1753 | 10000 | 0.4890          | 0.8202   |
| 0.7079        | 2.2841 | 10500 | 0.4910          | 0.8193   |
| 0.6874        | 2.3929 | 11000 | 0.4907          | 0.8222   |
| 0.6832        | 2.5016 | 11500 | 0.4875          | 0.8217   |
| 0.6807        | 2.6104 | 12000 | 0.4824          | 0.8224   |
| 0.6865        | 2.7192 | 12500 | 0.4877          | 0.8227   |
| 0.6863        | 2.8279 | 13000 | 0.4821          | 0.8232   |
| 0.6913        | 2.9367 | 13500 | 0.4914          | 0.8229   |
| 0.6996        | 3.0455 | 14000 | 0.4843          | 0.8241   |
| 0.687         | 3.1542 | 14500 | 0.4753          | 0.8250   |
| 0.6896        | 3.2630 | 15000 | 0.4762          | 0.8251   |
| 0.6745        | 3.3718 | 15500 | 0.4753          | 0.8242   |
| 0.6735        | 3.4805 | 16000 | 0.4713          | 0.8267   |
| 0.6764        | 3.5893 | 16500 | 0.4715          | 0.8259   |
| 0.6521        | 3.6981 | 17000 | 0.4669          | 0.8285   |
| 0.6686        | 3.8068 | 17500 | 0.4726          | 0.8269   |
| 0.6721        | 3.9156 | 18000 | 0.4703          | 0.8273   |
| 0.6682        | 4.0244 | 18500 | 0.4660          | 0.8274   |
| 0.6533        | 4.1331 | 19000 | 0.4690          | 0.8281   |
| 0.6547        | 4.2419 | 19500 | 0.4697          | 0.8282   |
| 0.6589        | 4.3507 | 20000 | 0.4640          | 0.8291   |
| 0.6518        | 4.4594 | 20500 | 0.4638          | 0.8294   |
| 0.6739        | 4.5682 | 21000 | 0.4669          | 0.8285   |
| 0.6763        | 4.6770 | 21500 | 0.4628          | 0.8304   |
| 0.6503        | 4.7857 | 22000 | 0.4640          | 0.8296   |
| 0.6659        | 4.8945 | 22500 | 0.4643          | 0.8295   |


### Framework versions

- PEFT 0.12.1.dev0
- Transformers 4.45.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1