|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" KOSMOS-2 model configuration""" |
|
|
|
import copy |
|
import os |
|
from typing import Union |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"microsoft/kosmos-2-patch14-224": ( |
|
"https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/config.json" |
|
), |
|
|
|
} |
|
|
|
|
|
class Kosmos2TextConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`Kosmos2TextModel`]. It is used to instantiate a KOSMOS-2 text decoder |
|
according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the text decoder of the KOSMOS-2 |
|
[microsoft/kosmos-2-patch14-224](https://huggingface.co/microsoft/kosmos-2-patch14-224) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 65037): |
|
Vocabulary size of the Kosmos2 model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`Kosmos2Model`]. |
|
embed_dim (`int`, *optional*, defaults to 2048): |
|
Dimensionality of the layers and the pooler layer. |
|
layers (`int`, *optional*, defaults to 24): |
|
Number of hidden layers in the Transformer encoder. |
|
attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
ffn_dim (`int`, *optional*, defaults to 8192): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. |
|
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"silu"` and `"gelu_new"` are supported. |
|
dropout (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_dropout (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention probabilities. |
|
activation_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for activations inside the fully connected layer. |
|
max_position_embeddings (`int`, *optional*, defaults to 2048): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
layerdrop (`float`, *optional*, defaults to 0.0): |
|
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) |
|
for more details. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-5): |
|
The epsilon used by the layer normalization layers. |
|
scale_embedding (`bool`, *optional*, defaults to `True`): |
|
Scale embeddings by diving by sqrt(embed_dim). |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import Kosmos2TextConfig, Kosmos2TextModel |
|
|
|
>>> # Initializing a Kosmos2TextConfig microsoft/kosmos-2-patch14-224 style configuration |
|
>>> configuration = Kosmos2TextConfig() |
|
|
|
>>> # Initializing a Kosmos2TextModel (with random weights) from the microsoft/kosmos-2-patch14-224 style configuration |
|
>>> model = Kosmos2TextModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "kosmos_2_text_model" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
attribute_map = {"num_attention_heads": "attention_heads", "hidden_size": "embed_dim"} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=65037, |
|
max_position_embeddings=2048, |
|
embed_dim=2048, |
|
layers=24, |
|
ffn_dim=8192, |
|
attention_heads=32, |
|
activation_function="gelu", |
|
dropout=0.1, |
|
attention_dropout=0.1, |
|
activation_dropout=0.0, |
|
layerdrop=0.0, |
|
layer_norm_eps=1e-5, |
|
scale_embedding=True, |
|
use_cache=True, |
|
pad_token_id=1, |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
**kwargs, |
|
): |
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
**kwargs, |
|
) |
|
|
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.embed_dim = embed_dim |
|
self.layers = layers |
|
self.ffn_dim = ffn_dim |
|
self.attention_heads = attention_heads |
|
self.activation_function = activation_function |
|
self.dropout = dropout |
|
self.attention_dropout = attention_dropout |
|
self.activation_dropout = activation_dropout |
|
self.layerdrop = layerdrop |
|
self.layer_norm_eps = layer_norm_eps |
|
self.scale_embedding = scale_embedding |
|
self.use_cache = use_cache |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": |
|
cls._set_token_in_kwargs(kwargs) |
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
|
|
if config_dict.get("model_type") == "kosmos-2": |
|
config_dict = config_dict["text_config"] |
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|
|
class Kosmos2VisionConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`Kosmos2VisionModel`]. It is used to instantiate a |
|
KOSMOS-2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the vision encoder of the KOSMOS-2 |
|
[microsoft/kosmos-2-patch14-224](https://huggingface.co/microsoft/kosmos-2-patch14-224) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
hidden_size (`int`, *optional*, defaults to 1024): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
intermediate_size (`int`, *optional*, defaults to 4096): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
num_hidden_layers (`int`, *optional*, defaults to 24): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 16): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
image_size (`int`, *optional*, defaults to 224): |
|
The size (resolution) of each image. |
|
patch_size (`int`, *optional*, defaults to 14): |
|
The size (resolution) of each patch. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-5): |
|
The epsilon used by the layer normalization layers. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
initializer_factor (`float`, *optional*, defaults to 1): |
|
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization |
|
testing). |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import Kosmos2VisionConfig, Kosmos2VisionModel |
|
|
|
>>> # Initializing a Kosmos2VisionConfig with microsoft/kosmos-2-patch14-224 style configuration |
|
>>> configuration = Kosmos2VisionConfig() |
|
|
|
>>> # Initializing a Kosmos2VisionModel (with random weights) from the microsoft/kosmos-2-patch14-224 style configuration |
|
>>> model = Kosmos2VisionModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "kosmos_2_vision_model" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=1024, |
|
intermediate_size=4096, |
|
projection_dim=512, |
|
num_hidden_layers=24, |
|
num_attention_heads=16, |
|
num_channels=3, |
|
image_size=224, |
|
patch_size=14, |
|
hidden_act="quick_gelu", |
|
layer_norm_eps=1e-5, |
|
attention_dropout=0.0, |
|
initializer_range=0.02, |
|
initializer_factor=1.0, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.projection_dim = projection_dim |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_channels = num_channels |
|
self.patch_size = patch_size |
|
self.image_size = image_size |
|
self.initializer_range = initializer_range |
|
self.initializer_factor = initializer_factor |
|
self.attention_dropout = attention_dropout |
|
self.layer_norm_eps = layer_norm_eps |
|
self.hidden_act = hidden_act |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": |
|
cls._set_token_in_kwargs(kwargs) |
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
|
|
if config_dict.get("model_type") == "kosmos-2": |
|
config_dict = config_dict["vision_config"] |
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|
|
class Kosmos2Config(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`Kosmos2Model`]. It is used to instantiate a KOSMOS-2 |
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the KOSMOS-2 |
|
[microsoft/kosmos-2-patch14-224](https://huggingface.co/microsoft/kosmos-2-patch14-224) architecture. |
|
|
|
Args: |
|
text_config (`dict`, *optional*): |
|
Dictionary of configuration options used to initialize [`Kosmos2TextConfig`]. |
|
vision_config (`dict`, *optional*): |
|
Dictionary of configuration options used to initialize [`Kosmos2VisionConfig`]. |
|
latent_query_num (`int`, *optional*, defaults to 64): |
|
The number of latent query tokens that represent the image features used in the text decoder component. |
|
kwargs (*optional*): |
|
Dictionary of keyword arguments. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import Kosmos2Config, Kosmos2Model |
|
|
|
>>> # Initializing a Kosmos-2 kosmos-2-patch14-224 style configuration |
|
>>> configuration = Kosmos2Config() |
|
|
|
>>> # Initializing a model (with random weights) from the kosmos-2-patch14-224 style configuration |
|
>>> model = Kosmos2Model(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "kosmos-2" |
|
is_composition = True |
|
|
|
def __init__( |
|
self, |
|
text_config=None, |
|
vision_config=None, |
|
latent_query_num=64, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
if text_config is None: |
|
text_config = {} |
|
logger.info("`text_config` is `None`. Initializing the `Kosmos2TextConfig` with default values.") |
|
|
|
if vision_config is None: |
|
vision_config = {} |
|
logger.info("`vision_config` is `None`. Initializing the `Kosmos2VisionConfig` with default values.") |
|
|
|
self.text_config = Kosmos2TextConfig(**text_config) |
|
self.vision_config = Kosmos2VisionConfig(**vision_config) |
|
|
|
self.latent_query_num = latent_query_num |
|
|
|
def to_dict(self): |
|
""" |
|
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. |
|
|
|
Returns: |
|
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, |
|
""" |
|
output = copy.deepcopy(self.__dict__) |
|
output["text_config"] = self.text_config.to_dict() |
|
output["vision_config"] = self.vision_config.to_dict() |
|
output["model_type"] = self.__class__.model_type |
|
return output |
|
|