File size: 17,674 Bytes
0dce8b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59d9a7f
 
0dce8b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# coding=utf-8
# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization classes for KOSMOS-2 model."""


import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple

import sentencepiece as spm

from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
from transformers.utils import logging


logger = logging.get_logger(__name__)

SPIECE_UNDERLINE = "▁"

VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}

PRETRAINED_VOCAB_FILES_MAP = {
    "vocab_file": {
        "microsoft/kosmos-2-patch14-224": "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/sentencepiece.bpe.model",
    }
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    "microsoft/kosmos-2-patch14-224": 2048,
}


class Kosmos2Tokenizer(PreTrainedTokenizer):
    """
    Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
    [SentencePiece](https://github.com/google/sentencepiece).

    This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
    this superclass for more information regarding those methods.

    Args:
        vocab_file (`str`):
            Path to the vocabulary file.
        bos_token (`str`, *optional*, defaults to `"<s>"`):
            The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.

            <Tip>

            When building a sequence using special tokens, this is not the token that is used for the beginning of
            sequence. The token used is the `cls_token`.

            </Tip>

        eos_token (`str`, *optional*, defaults to `"</s>"`):
            The end of sequence token.

            <Tip>

            When building a sequence using special tokens, this is not the token that is used for the end of sequence.
            The token used is the `sep_token`.

            </Tip>

        sep_token (`str`, *optional*, defaults to `"</s>"`):
            The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
            sequence classification or for a text and a question for question answering. It is also used as the last
            token of a sequence built with special tokens.
        cls_token (`str`, *optional*, defaults to `"<s>"`):
            The classifier token which is used when doing sequence classification (classification of the whole sequence
            instead of per-token classification). It is the first token of the sequence when built with special tokens.
        unk_token (`str`, *optional*, defaults to `"<unk>"`):
            The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
            token instead.
        pad_token (`str`, *optional*, defaults to `"<pad>"`):
            The token used for padding, for example when batching sequences of different lengths.
        mask_token (`str`, *optional*, defaults to `"<mask>"`):
            The token used for masking values. This is the token used when training this model with masked language
            modeling. This is the token which the model will try to predict.
        additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`):
            Additional special tokens used by the tokenizer.
        num_patch_index_tokens (`int`, *optional*, defaults to `1024`):
            The number of tokens used to specify the patch indices of bounding boxes in an image. These tokens have the
            format `<patch_index_xxxx>` where `xxxx` is an integer.
        sp_model_kwargs (`dict`, *optional*):
            Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
            SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
            to set:

            - `enable_sampling`: Enable subword regularization.
            - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.

              - `nbest_size = {0,1}`: No sampling is performed.
              - `nbest_size > 1`: samples from the nbest_size results.
              - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
                using forward-filtering-and-backward-sampling algorithm.

            - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
              BPE-dropout.

    Attributes:
        sp_model (`SentencePieceProcessor`):
            The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
    """

    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
    model_input_names = ["input_ids", "attention_mask"]

    def __init__(
        self,
        vocab_file,
        bos_token="<s>",
        eos_token="</s>",
        sep_token="</s>",
        cls_token="<s>",
        unk_token="<unk>",
        pad_token="<pad>",
        mask_token="<mask>",
        num_patch_index_tokens=1024,
        add_tag_and_patch_index_tokens=False,
        sp_model_kwargs: Optional[Dict[str, Any]] = None,
        **kwargs,
    ) -> None:
        # Mask token behave like a normal word, i.e. include the space before it
        mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token

        self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs

        super().__init__(
            bos_token=bos_token,
            eos_token=eos_token,
            unk_token=unk_token,
            sep_token=sep_token,
            cls_token=cls_token,
            pad_token=pad_token,
            mask_token=mask_token,
            sp_model_kwargs=self.sp_model_kwargs,
            **kwargs,
        )

        self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
        self.sp_model.Load(str(vocab_file))
        self.vocab_file = vocab_file

        # Original fairseq vocab and spm vocab must be "aligned":
        # Vocab    |    0    |    1    |   2    |    3    |    4   |    5   |    6   |    7   |    8    |   9
        # -------- | ------- | ------- | ------ | ------- | ------ | ------ | ------ | ------ | ------- | ------
        # fairseq  | '<s>'   | '<pad>' | '</s>' | '<unk>' | '.'    | '_the' | ','    | '▁to'  | '▁and' | '▁of'
        # spm      | '<unk>' | '<s>'   | '</s>' | '.'     | '_the' | ','    | '▁to' | '▁and' | '▁of'   | '▁a'

        # Mimic fairseq token-to-id alignment for the first 4 token
        self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}

        # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
        self.fairseq_offset = 1

        self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + self.fairseq_offset
        self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}

        self.eod_token = "</doc>"

        self.boi_token = "<image>"
        self.eoi_token = "</image>"

        self.eoc_token = "</chunk>"
        self.eol_token = "</line>"

        self.bop_token = "<phrase>"
        self.eop_token = "</phrase>"

        self.boo_token = "<object>"
        self.eoo_token = "</object>"

        self.dom_token = "</delimiter_of_multi_objects/>"

        self.grd_token = "<grounding>"

        self.tag_tokens = [
            self.eod_token,
            self.boi_token,
            self.eoi_token,
            self.eoc_token,
            self.eol_token,
            self.bop_token,
            self.eop_token,
            self.boo_token,
            self.eoo_token,
            self.dom_token,
            self.grd_token,
        ]

        self.num_patch_index_tokens = num_patch_index_tokens
        patch_index_tokens = [f"<patch_index_{str(x).zfill(4)}>" for x in range(self.num_patch_index_tokens)]

        if add_tag_and_patch_index_tokens:
            for idx, token in enumerate(self.tag_tokens + patch_index_tokens):
                # we can't add them as special tokens, as the slow tokenizer doesn't save the information of a token
                # being special when it is added through `add_tokens`, but the fast tokenizer is able to do so.
                self.add_tokens(AddedToken(token, lstrip=True, rstrip=False), special_tokens=True)

    def _decode(
        self,
        token_ids: List[int],
        skip_special_tokens: bool = False,
        clean_up_tokenization_spaces: bool = None,
        spaces_between_special_tokens: bool = True,
        **kwargs,
    ) -> str:
        self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False)

        filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)

        # To avoid mixing byte-level and unicode for byte-level BPT
        # we need to build string separately for added tokens and byte-level tokens
        # cf. https://github.com/huggingface/transformers/issues/1133
        sub_texts = []
        current_sub_text = []
        is_first_current_sub_text = True
        for token in filtered_tokens:
            if skip_special_tokens and token in self.all_special_ids:
                continue
            if token in self.added_tokens_encoder:
                if current_sub_text:
                    sub_text = self.convert_tokens_to_string(current_sub_text)
                    # `convert_tokens_to_string` removes the leading space, which is undesired if we are not at the
                    # beginning part of the text. We can't use `spaces_between_special_tokens` to add this space back
                    # neither, as it will also add a space before a tag/patch_index token (which is not the case with
                    # the fast tokenizer - it doesn't even support `spaces_between_special_tokens`), which is not the
                    # ideal output format.
                    # The condition `not spaces_between_special_tokens` is to avoid double spaces.
                    if not is_first_current_sub_text and not spaces_between_special_tokens:
                        sub_text = " " + sub_text
                    sub_texts.append(sub_text)
                    current_sub_text = []
                    is_first_current_sub_text = False
                sub_texts.append(token)
            else:
                current_sub_text.append(token)
        if current_sub_text:
            sub_texts.append(self.convert_tokens_to_string(current_sub_text))

        if spaces_between_special_tokens:
            text = " ".join(sub_texts)
        else:
            text = "".join(sub_texts)

        clean_up_tokenization_spaces = (
            clean_up_tokenization_spaces
            if clean_up_tokenization_spaces is not None
            else self.clean_up_tokenization_spaces
        )
        if clean_up_tokenization_spaces:
            clean_text = self.clean_up_tokenization(text)
            return clean_text
        else:
            return text

    def __getstate__(self):
        state = self.__dict__.copy()
        state["sp_model"] = None
        state["sp_model_proto"] = self.sp_model.serialized_model_proto()
        return state

    def __setstate__(self, d):
        self.__dict__ = d

        # for backward compatibility
        if not hasattr(self, "sp_model_kwargs"):
            self.sp_model_kwargs = {}

        self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
        self.sp_model.LoadFromSerializedProto(self.sp_model_proto)

    def build_inputs_with_special_tokens(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
        adding special tokens. An XLM-RoBERTa sequence has the following format:

        - single sequence: `<s> X </s>`
        - pair of sequences: `<s> A </s></s> B </s>`

        Args:
            token_ids_0 (`List[int]`):
                List of IDs to which the special tokens will be added.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
        """

        if token_ids_1 is None:
            return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
        cls = [self.cls_token_id]
        sep = [self.sep_token_id]
        return cls + token_ids_0 + sep + sep + token_ids_1 + sep

    def get_special_tokens_mask(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
    ) -> List[int]:
        """
        Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer `prepare_for_model` method.

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.
            already_has_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not the token list is already formatted with special tokens for the model.

        Returns:
            `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """

        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
            )

        if token_ids_1 is None:
            return [1] + ([0] * len(token_ids_0)) + [1]
        return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]

    def create_token_type_ids_from_sequences(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does
        not make use of token type ids, therefore a list of zeros is returned.

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `List[int]`: List of zeros.

        """

        sep = [self.sep_token_id]
        cls = [self.cls_token_id]

        if token_ids_1 is None:
            return len(cls + token_ids_0 + sep) * [0]
        return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]

    @property
    def vocab_size(self):
        return len(self.sp_model) + self.fairseq_offset + 1  # Add the <mask> token

    def get_vocab(self):
        vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
        vocab.update(self.added_tokens_encoder)
        return vocab

    def _tokenize(self, text: str) -> List[str]:
        return self.sp_model.encode(text, out_type=str)

    def _convert_token_to_id(self, token):
        """Converts a token (str) in an id using the vocab."""
        if token in self.fairseq_tokens_to_ids:
            return self.fairseq_tokens_to_ids[token]
        spm_id = self.sp_model.PieceToId(token)

        # Need to return unknown token if the SP model returned 0
        return spm_id + self.fairseq_offset if spm_id else self.unk_token_id

    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (str) using the vocab."""
        if index in self.fairseq_ids_to_tokens:
            return self.fairseq_ids_to_tokens[index]
        return self.sp_model.IdToPiece(index - self.fairseq_offset)

    def convert_tokens_to_string(self, tokens):
        """Converts a sequence of tokens (strings for sub-words) in a single string."""
        out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
        return out_string

    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
        if not os.path.isdir(save_directory):
            logger.error(f"Vocabulary path ({save_directory}) should be a directory")
            return
        out_vocab_file = os.path.join(
            save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
        )

        if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
            copyfile(self.vocab_file, out_vocab_file)
        elif not os.path.isfile(self.vocab_file):
            with open(out_vocab_file, "wb") as fi:
                content_spiece_model = self.sp_model.serialized_model_proto()
                fi.write(content_spiece_model)

        return (out_vocab_file,)