File size: 2,109 Bytes
3e26065 81a7bb0 3e26065 81a7bb0 3e26065 81a7bb0 3e26065 81a7bb0 3e26065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-ucfsuc-subset
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# videomae-base-finetuned-ucfsuc-subset
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6334
- Accuracy: 0.7079
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 310
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.7131 | 0.1032 | 32 | 0.7573 | 0.3596 |
| 0.7351 | 1.1032 | 64 | 0.6929 | 0.5393 |
| 0.6892 | 2.1032 | 96 | 0.7539 | 0.5393 |
| 0.693 | 3.1032 | 128 | 0.7079 | 0.5169 |
| 0.5903 | 4.1032 | 160 | 0.7080 | 0.6180 |
| 0.626 | 5.1032 | 192 | 0.6610 | 0.6854 |
| 0.6316 | 6.1032 | 224 | 0.5789 | 0.7303 |
| 0.5287 | 7.1032 | 256 | 0.6366 | 0.7079 |
| 0.6648 | 8.1032 | 288 | 0.6215 | 0.7191 |
| 0.4605 | 9.0710 | 310 | 0.6334 | 0.7079 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|