--- library_name: transformers license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - alignment-handbook - trl - simpo - generated_from_trainer - trl - simpo - generated_from_trainer datasets: - yakazimir/llama3-ultrafeedback-armorm model-index: - name: llama3instruct_-l5-10-0_3-1e-6-2_best results: [] --- # llama3instruct_-l5-10-0_3-1e-6-2_best This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the yakazimir/llama3-ultrafeedback-armorm dataset. It achieves the following results on the evaluation set: - Loss: 1.2685 - Rewards/chosen: -8.0711 - Rewards/rejected: -19.7238 - Rewards/accuracies: 0.8675 - Rewards/margins: 11.6527 - Logps/rejected: -1.9724 - Logps/chosen: -0.8071 - Logits/rejected: -1.3327 - Logits/chosen: -1.4140 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 1.4299 | 0.8743 | 400 | 1.4682 | -8.3837 | -17.5861 | 0.8705 | 9.2024 | -1.7586 | -0.8384 | -1.2770 | -1.3300 | | 0.7858 | 1.7486 | 800 | 1.2716 | -7.9331 | -19.2874 | 0.8614 | 11.3543 | -1.9287 | -0.7933 | -1.2977 | -1.3755 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1