--- library_name: transformers license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - alignment-handbook - trl - simpo - generated_from_trainer - trl - simpo - generated_from_trainer datasets: - yakazimir/llama3-ultrafeedback-armorm model-index: - name: llama3_l5_best_entropy results: [] --- # llama3_l5_best_entropy This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the yakazimir/llama3-ultrafeedback-armorm dataset. It achieves the following results on the evaluation set: - Loss: 1.4398 - Rewards/chosen: -8.4238 - Rewards/rejected: -21.7089 - Rewards/accuracies: 0.8795 - Rewards/margins: 13.2850 - Logps/rejected: -2.1709 - Logps/chosen: -0.8424 - Logits/rejected: -1.4192 - Logits/chosen: -1.5108 - Semantic Entropy: 0.8327 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Semantic Entropy | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:----------------:| | 1.5778 | 0.8743 | 400 | 1.6373 | -8.6865 | -18.8603 | 0.8735 | 10.1738 | -1.8860 | -0.8687 | -1.4323 | -1.5078 | 0.8519 | | 0.9552 | 1.7486 | 800 | 1.4402 | -8.2804 | -21.2503 | 0.8795 | 12.9699 | -2.1250 | -0.8280 | -1.4434 | -1.5360 | 0.8377 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1