---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:244856
- loss:CosineSimilarityLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
widget:
- source_sentence: Bulan apa inflasi sebesar 0,63 persen terjadi pada tahun 2013?
sentences:
- Pada bulan Mei 2013 terjadi inflasi sebesar 0,2 persen
- Nilai Tukar Petani (NTP) April 2024 sebesar 116,79 atau turun 2,18 persen.
- Posisi Kredit Perbankan1dalam Rupiah dan Valuta Asing Menurut Sektor
Ekonomi (miliar rupiah), 2016-2018
- source_sentence: Berapa persen penurunan Nilai Tukar Petani NTP Februari 2017
sentences:
- Produksi Tanaman Pangan Angka Ramalan II Tahun 2015
- Nilai Tukar Petani (NTP) Februari 2017 Sebesar 100,33 Atau Turun 0,58 Persen
- Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut HS, Juni 2024
- source_sentence: analisis industri pariwisata indonesia tahun 2013
sentences:
- Ringkasan Neraca Arus Dana, Triwulan IV, 2012), (Miliar Rupiah)
- Pengeluaran Untuk Konsumsi Penduduk Indonesia September 2014
- Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Kelompok Komoditi dan
Negara, Desember 2020
- source_sentence: Sosial ekonomi Indonesia bulan November 2020
sentences:
- Pos Kesehatan Desa
- Jumlah Wisman Pada Januari 2011 Naik 11,14 Persen dan Penumpang Angkutan Udara
Domestik Pada Januari 2011 Turun 6,88 Persen
- Laporan Bulanan Data Sosial Ekonomi September 2017
- source_sentence: Tahun berapa Rupiah terdepresiasi 0,23 persen terhadap Dolar Amerika?
sentences:
- 'Nilai Impor Menurut Negara Asal Utama (Nilai CIF: juta US$), 2000-2023'
- Ringkasan Neraca Arus Dana Triwulan Pertama, 2002, (Miliar Rupiah)
- Depresiasi Rupiah terhadap Dolar Amerika pada tahun 2016 sebesar 0,5 persen.
datasets:
- yahyaabd/allstats-semantic-search-synthetic-dataset-v2
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstats semantic search mini v2 eval
type: allstats-semantic-search-mini-v2-eval
metrics:
- type: pearson_cosine
value: 0.9838643974678674
name: Pearson Cosine
- type: spearman_cosine
value: 0.8951406685580494
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstat semantic search mini v2 test
type: allstat-semantic-search-mini-v2-test
metrics:
- type: pearson_cosine
value: 0.98307083670705
name: Pearson Cosine
- type: spearman_cosine
value: 0.8922084062478435
name: Spearman Cosine
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the [allstats-semantic-search-synthetic-dataset-v2](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v2) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [allstats-semantic-search-synthetic-dataset-v2](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v2)
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-semantic-search-mini-model-v2")
# Run inference
sentences = [
'Tahun berapa Rupiah terdepresiasi 0,23 persen terhadap Dolar Amerika?',
'Depresiasi Rupiah terhadap Dolar Amerika pada tahun 2016 sebesar 0,5 persen.',
'Ringkasan Neraca Arus Dana Triwulan Pertama, 2002, (Miliar Rupiah)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Datasets: `allstats-semantic-search-mini-v2-eval` and `allstat-semantic-search-mini-v2-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | allstats-semantic-search-mini-v2-eval | allstat-semantic-search-mini-v2-test |
|:--------------------|:--------------------------------------|:-------------------------------------|
| pearson_cosine | 0.9839 | 0.9831 |
| **spearman_cosine** | **0.8951** | **0.8922** |
## Training Details
### Training Dataset
#### allstats-semantic-search-synthetic-dataset-v2
* Dataset: [allstats-semantic-search-synthetic-dataset-v2](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v2) at [c76f31a](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v2/tree/c76f31abb3f2d3a2edd9895b9f5e896bf7c84f34)
* Size: 244,856 training samples
* Columns: query
, doc
, and label
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
Dtaa harg konsymen edesaan (non-makann) 201
| Statistik Harga Konsumen Perdesaan Kelompok Nonmakanan (Data 2013)
| 0.95
|
| Bagaimna konidsi keuamgan rymah atngga Indonsia 2020-2022?
| Statistik Perusahaan Perikanan 2007
| 0.1
|
| Tingkat hunian kamar hotel tahun 2023
| Tingkat Penghunian Kamar Hotel 2023
| 0.99
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### allstats-semantic-search-synthetic-dataset-v2
* Dataset: [allstats-semantic-search-synthetic-dataset-v2](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v2) at [c76f31a](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v2/tree/c76f31abb3f2d3a2edd9895b9f5e896bf7c84f34)
* Size: 52,469 evaluation samples
* Columns: query
, doc
, and label
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | Bulan apa NTP mengalami kenaikan 0,25 persen?
| Jumlah Wisatawan Mancanegara Bulan Agustus 2009 Turun 4,49 Persen Dibandingkan Bulan Sebelumnya.
| 0.0
|
| Sebutksn keempa komositi tang disebutkn besert persentae mrajin persagangannya.
| Marjin Perdagangan Minyak Goreng 3,86 Persen, Terigu 5,92 Persen, Garam 23,74 Persen, Dan Susu Bubuk 13,02 Persen
| 1.0
|
| Data kemiskinan per kabupaten/kota tahun 2007
| Data dan Informasi Kemiskinan 2007 Buku 2: Kabupaten/Kota
| 0.87
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 8
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters