--- license: bsd-3-clause tags: - generated_from_trainer metrics: - accuracy base_model: MIT/ast-finetuned-audioset-10-10-0.4593 model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuning-ESC-50-slower-LR results: [] --- # ast-finetuned-audioset-10-10-0.4593-finetuning-ESC-50-slower-LR This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7837 - Accuracy: 0.8929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 9.3646 | 1.0 | 28 | 6.0136 | 0.0893 | | 2.9631 | 2.0 | 56 | 2.0175 | 0.5357 | | 1.2435 | 3.0 | 84 | 1.1471 | 0.7679 | | 0.7699 | 4.0 | 112 | 0.8559 | 0.875 | | 0.5911 | 5.0 | 140 | 0.7837 | 0.8929 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2