--- library_name: transformers language: - eu license: apache-2.0 base_model: openai/whisper-medium tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Medium Basque results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_17_0 eu type: mozilla-foundation/common_voice_17_0 config: eu split: test args: eu metrics: - name: Wer type: wer value: 8.8020814247499 --- # Whisper Medium Basque This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_17_0 eu dataset. It achieves the following results on the evaluation set: - Loss: 0.1787 - Wer: 8.8021 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.25e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.3171 | 0.0625 | 500 | 0.3369 | 25.5304 | | 0.1852 | 0.125 | 1000 | 0.2409 | 17.3110 | | 0.2353 | 0.1875 | 1500 | 0.2050 | 14.2228 | | 0.1569 | 1.037 | 2000 | 0.1815 | 12.2861 | | 0.125 | 1.0995 | 2500 | 0.1692 | 11.1144 | | 0.12 | 1.162 | 3000 | 0.1600 | 10.6975 | | 0.069 | 2.0115 | 3500 | 0.1540 | 9.7649 | | 0.0606 | 2.074 | 4000 | 0.1550 | 9.8199 | | 0.0434 | 2.1365 | 4500 | 0.1580 | 9.4571 | | 0.0455 | 2.199 | 5000 | 0.1533 | 9.1410 | | 0.0216 | 3.0485 | 5500 | 0.1620 | 9.0842 | | 0.017 | 3.111 | 6000 | 0.1704 | 9.0980 | | 0.0174 | 3.1735 | 6500 | 0.1681 | 9.0723 | | 0.0098 | 4.023 | 7000 | 0.1725 | 8.8625 | | 0.0076 | 4.0855 | 7500 | 0.1765 | 8.8351 | | 0.007 | 4.148 | 8000 | 0.1787 | 8.8021 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.2.dev0 - Tokenizers 0.20.0