--- library_name: transformers language: - eu license: apache-2.0 base_model: openai/whisper-large-v3 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Large Basque results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_17_0 eu type: mozilla-foundation/common_voice_17_0 config: eu split: test args: eu metrics: - name: Wer type: wer value: 7.215361500971087 --- # Whisper Large Basque This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the mozilla-foundation/common_voice_17_0 eu dataset. It achieves the following results on the evaluation set: - Loss: 0.1259 - Wer: 7.2154 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.375e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2208 | 0.05 | 500 | 0.2592 | 20.6915 | | 0.1489 | 0.1 | 1000 | 0.1971 | 14.6827 | | 0.1973 | 0.15 | 1500 | 0.1747 | 12.3777 | | 0.1353 | 1.0296 | 2000 | 0.1527 | 10.7195 | | 0.1065 | 1.0796 | 2500 | 0.1456 | 9.8694 | | 0.106 | 1.1296 | 3000 | 0.1362 | 9.0925 | | 0.0718 | 2.0092 | 3500 | 0.1326 | 8.5428 | | 0.0683 | 2.0592 | 4000 | 0.1343 | 8.4851 | | 0.0482 | 2.1092 | 4500 | 0.1336 | 8.1049 | | 0.0548 | 2.1592 | 5000 | 0.1316 | 7.9244 | | 0.0282 | 3.0388 | 5500 | 0.1391 | 7.8182 | | 0.025 | 3.0888 | 6000 | 0.1425 | 7.9409 | | 0.0274 | 3.1388 | 6500 | 0.1391 | 7.7311 | | 0.0155 | 4.0184 | 7000 | 0.1492 | 7.6972 | | 0.0189 | 4.0684 | 7500 | 0.1517 | 7.6569 | | 0.0139 | 4.1184 | 8000 | 0.1539 | 7.6267 | | 0.0141 | 4.1684 | 8500 | 0.1550 | 7.5424 | | 0.0368 | 5.048 | 9000 | 0.1259 | 7.2154 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.2.dev0 - Tokenizers 0.20.0