File size: 1,790 Bytes
6827b89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
library_name: transformers
license: other
base_model: TinyLlama/TinyLlama-1.1B-step-50K-105b
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: tinyllama_sft_full
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# tinyllama_sft_full

This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-step-50K-105b](https://huggingface.co/TinyLlama/TinyLlama-1.1B-step-50K-105b) on the jailbreak_attack_sft_data_12197 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0074

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 14
- eval_batch_size: 10
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 56
- total_eval_batch_size: 40
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 8.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.0109        | 1.8692 | 400  | 0.0107          |
| 0.0068        | 3.7383 | 800  | 0.0079          |
| 0.0059        | 5.6075 | 1200 | 0.0075          |
| 0.0053        | 7.4766 | 1600 | 0.0074          |


### Framework versions

- Transformers 4.47.0
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.21.0