File size: 9,135 Bytes
cdbc190
 
 
 
 
408b007
 
 
 
cdbc190
 
 
 
 
 
 
 
05f45f2
cdbc190
 
 
 
 
 
 
 
 
 
 
 
 
 
ee8fce3
cdbc190
ee8fce3
cdbc190
 
 
ee8fce3
 
cdbc190
408b007
cdbc190
 
ee8fce3
cdbc190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
---
tags:
- espnet
- audio
- audio-to-audio
datasets:
- VCTK_DEMAND
- DNS2020
- WHAMR
language: en
license: cc-by-4.0
---

## ESPnet2 ENH model

### `wyz/vctk_dns2020_whamr_bsrnn_large_noncausal`

This model was trained by wyz based on the universal_se_v1 recipe in [espnet](https://github.com/espnet/espnet/). More information can be found at https://github.com/Emrys365/se-scaling.

### Demo: How to use in ESPnet2

Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html)
if you haven't done that already.

To use the model in the Python interface, you could use the following code:

```python
import soundfile as sf
from espnet2.bin.enh_inference import SeparateSpeech

# For model downloading + loading
model = SeparateSpeech.from_pretrained(
    model_tag="wyz/vctk_dns2020_whamr_bsrnn_large_noncausal",
    normalize_output_wav=True,
    device="cuda",
)
# For loading a downloaded model
# model = SeparateSpeech(
#     train_config="exp_vctk_dns20_whamr/enh_train_enh_bsrnn_large_noncausal_raw/config.yaml",
#     model_file="exp_vctk_dns20_whamr/enh_train_enh_bsrnn_large_noncausal_raw/xxxx.pth",
#     normalize_output_wav=True,
#     device="cuda",
# )

audio, fs = sf.read("/path/to/noisy/utt1.flac")
enhanced = model(audio[None, :], fs=fs)[0]
```

<!-- Generated by ./scripts/utils/show_enh_score.sh -->
# RESULTS
## Environments
- date: `Tue Feb 27 21:04:54 EST 2024`
- python version: `3.8.16 (default, Mar  2 2023, 03:21:46)  [GCC 11.2.0]`
- espnet version: `espnet 202304`
- pytorch version: `pytorch 2.0.1+cu118`
- Git hash: `443028662106472c60fe8bd892cb277e5b488651`
  - Commit date: `Thu May 11 03:32:59 2023 +0000`


## enhanced_test_16k


|dataset|PESQ_WB|STOI|SAR|SDR|SIR|SI_SNR|OVRL|SIG|BAK|P808_MOS|
|---|---|---|---|---|---|---|---|---|---|---|
|chime4_et05_real_isolated_6ch_track|1.23|55.03|-2.12|-2.12|0.00|-31.22|3.11|3.44|3.88|3.73|
|chime4_et05_simu_isolated_6ch_track|1.67|87.32|9.94|9.94|0.00|2.32|3.03|3.34|3.91|3.45|
|dns20_tt_synthetic_no_reverb|3.35|98.12|20.24|20.24|0.00|20.05|3.34|3.58|4.12|4.06|
|reverb_et_real_8ch_multich|1.15|66.78|1.47|1.47|0.00|-1.58|3.15|3.50|3.86|3.77|
|reverb_et_simu_8ch_multich|2.29|94.59|10.87|10.87|0.00|-8.41|3.12|3.49|3.82|3.83|
|whamr_tt_mix_single_reverb_max_16k|2.34|94.47|11.98|11.98|0.00|10.41|3.27|3.52|4.10|3.80|


## enhanced_test_48k


|dataset|STOI|SAR|SDR|SIR|SI_SNR|OVRL|SIG|BAK|P808_MOS|
|---|---|---|---|---|---|---|---|---|---|
|vctk_noisy_tt_2spk|95.75|19.57|19.57|0.00|18.73|3.17|3.47|3.99|3.55|

## ENH config

<details><summary>expand</summary>

```
config: conf/tuning/train_enh_bsrnn_large_noncausal.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: chunk
output_dir: exp_vctk_dns20_whamr/enh_train_enh_bsrnn_large_noncausal_raw
ngpu: 1
seed: 0
num_workers: 4
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: 0
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: true
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 100
patience: 15
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
-   - valid
    - loss
    - min
keep_nbest_models: 1
nbest_averaging_interval: 0
grad_clip: 5.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
save_interval: 1000
train_dtype: float32
use_amp: false
log_interval: null
use_matplotlib: true
use_tensorboard: true
create_graph_in_tensorboard: false
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: 8000
num_iters_valid: null
batch_size: 4
valid_batch_size: null
batch_bins: 1000000
valid_batch_bins: null
train_shape_file:
- exp_vctk_dns20_whamr/enh_stats_16k/train/speech_mix_shape
- exp_vctk_dns20_whamr/enh_stats_16k/train/speech_ref1_shape
valid_shape_file:
- exp_vctk_dns20_whamr/enh_stats_16k/valid/speech_mix_shape
- exp_vctk_dns20_whamr/enh_stats_16k/valid/speech_ref1_shape
batch_type: folded
valid_batch_type: null
fold_length:
- 80000
- 80000
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 32000
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
chunk_excluded_key_prefixes: []
chunk_discard_short_samples: false
train_data_path_and_name_and_type:
-   - dump/raw/train_vctk_noisy_dns20_whamr/wav.scp
    - speech_mix
    - sound
-   - dump/raw/train_vctk_noisy_dns20_whamr/spk1.scp
    - speech_ref1
    - sound
-   - dump/raw/train_vctk_noisy_dns20_whamr/utt2category
    - category
    - text
-   - dump/raw/train_vctk_noisy_dns20_whamr/utt2fs
    - fs
    - text_int
valid_data_path_and_name_and_type:
-   - dump/raw/valid_vctk_noisy_dns20_whamr/wav.scp
    - speech_mix
    - sound
-   - dump/raw/valid_vctk_noisy_dns20_whamr/spk1.scp
    - speech_ref1
    - sound
-   - dump/raw/valid_vctk_noisy_dns20_whamr/utt2category
    - category
    - text
-   - dump/raw/valid_vctk_noisy_dns20_whamr/utt2fs
    - fs
    - text_int
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
allow_multi_rates: true
valid_max_cache_size: null
exclude_weight_decay: false
exclude_weight_decay_conf: {}
optim: adam
optim_conf:
    lr: 0.001
    eps: 1.0e-08
    weight_decay: 1.0e-05
scheduler: steplr
scheduler_conf:
    step_size: 2
    gamma: 0.99
init: null
model_conf:
    normalize_variance_per_ch: true
    categories:
    - 1ch_8k
    - 1ch_8k_r
    - 1ch_16k_r
    - 1ch_48k
    - 1ch_24k
    - 1ch_16k
    - 2ch_8k
    - 2ch_8k_r
    - 2ch_16k
    - 2ch_16k_r
    - 5ch_8k
    - 5ch_16k
    - 8ch_8k_r
    - 8ch_16k_r
criterions:
-   name: mr_l1_tfd
    conf:
        window_sz:
        - 256
        - 512
        - 768
        - 1024
        hop_sz: null
        eps: 1.0e-08
        time_domain_weight: 0.5
        normalize_variance: true
    wrapper: fixed_order
    wrapper_conf:
        weight: 1.0
-   name: si_snr
    conf:
        eps: 1.0e-07
    wrapper: fixed_order
    wrapper_conf:
        weight: 0.0
speech_volume_normalize: null
rir_scp: null
rir_apply_prob: 1.0
noise_scp: null
noise_apply_prob: 1.0
noise_db_range: '13_15'
short_noise_thres: 0.5
use_reverberant_ref: false
num_spk: 1
num_noise_type: 1
sample_rate: 8000
force_single_channel: true
channel_reordering: true
categories:
- 1ch_8k
- 1ch_8k_r
- 1ch_16k_r
- 1ch_48k
- 1ch_24k
- 1ch_16k
- 2ch_8k
- 2ch_8k_r
- 2ch_16k
- 2ch_16k_r
- 5ch_8k
- 5ch_16k
- 8ch_8k_r
- 8ch_16k_r
speech_segment: null
avoid_allzero_segment: true
flexible_numspk: false
dynamic_mixing: false
utt2spk: null
dynamic_mixing_gain_db: 0.0
encoder: stft
encoder_conf:
    n_fft: 960
    hop_length: 480
    use_builtin_complex: true
    default_fs: 48000
separator: bsrnn
separator_conf:
    num_spk: 1
    num_channels: 256
    num_layers: 6
    target_fs: 48000
    ref_channel: 0
    causal: false
decoder: stft
decoder_conf:
    n_fft: 960
    hop_length: 480
    default_fs: 48000
mask_module: multi_mask
mask_module_conf: {}
preprocessor: enh
preprocessor_conf: {}
required:
- output_dir
version: '202304'
distributed: false
```

</details>



### Citing ESPnet

```BibTex
@inproceedings{watanabe2018espnet,
  author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
  title={{ESPnet}: End-to-End Speech Processing Toolkit},
  year={2018},
  booktitle={Proceedings of Interspeech},
  pages={2207--2211},
  doi={10.21437/Interspeech.2018-1456},
  url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}


@inproceedings{ESPnet-SE,
  author = {Chenda Li and Jing Shi and Wangyou Zhang and Aswin Shanmugam Subramanian and Xuankai Chang and
  Naoyuki Kamo and Moto Hira and Tomoki Hayashi and Christoph B{"{o}}ddeker and Zhuo Chen and Shinji Watanabe},
  title = {ESPnet-SE: End-To-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration},
  booktitle = {{IEEE} Spoken Language Technology Workshop, {SLT} 2021, Shenzhen, China, January 19-22, 2021},
  pages = {785--792},
  publisher = {{IEEE}},
  year = {2021},
  url = {https://doi.org/10.1109/SLT48900.2021.9383615},
  doi = {10.1109/SLT48900.2021.9383615},
  timestamp = {Mon, 12 Apr 2021 17:08:59 +0200},
  biburl = {https://dblp.org/rec/conf/slt/Li0ZSCKHHBC021.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}


```

or arXiv:

```bibtex
@misc{watanabe2018espnet,
  title={ESPnet: End-to-End Speech Processing Toolkit},
  author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
  year={2018},
  eprint={1804.00015},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
```