wwydmanski
commited on
Upload folder using huggingface_hub
Browse files- README.md +137 -391
- config.json +1 -1
- config_sentence_transformers.json +4 -4
- model.safetensors +1 -1
- tokenizer_config.json +1 -0
README.md
CHANGED
@@ -8,44 +8,42 @@ tags:
|
|
8 |
- loss:MultipleNegativesRankingLoss
|
9 |
base_model: Snowflake/snowflake-arctic-embed-l-v2.0
|
10 |
widget:
|
11 |
-
- source_sentence:
|
12 |
sentences:
|
13 |
-
- '
|
14 |
-
- '
|
15 |
-
|
16 |
-
|
17 |
-
-
|
|
|
18 |
sentences:
|
19 |
-
- '
|
20 |
-
|
21 |
-
- '
|
22 |
-
|
23 |
-
and Dependence-Related Symptoms. '
|
24 |
-
- 'Human migration. '
|
25 |
-
- source_sentence: Human Mobility Prediction
|
26 |
sentences:
|
27 |
-
- '
|
28 |
-
- '
|
29 |
-
- '
|
30 |
-
|
|
|
31 |
sentences:
|
32 |
-
- '
|
33 |
-
|
34 |
-
- '
|
35 |
-
-
|
|
|
|
|
36 |
sentences:
|
37 |
-
- '
|
38 |
-
|
39 |
-
- '
|
40 |
-
|
|
|
41 |
pipeline_tag: sentence-similarity
|
42 |
library_name: sentence-transformers
|
43 |
metrics:
|
44 |
- cosine_accuracy
|
45 |
-
- dot_accuracy
|
46 |
-
- manhattan_accuracy
|
47 |
-
- euclidean_accuracy
|
48 |
-
- max_accuracy
|
49 |
model-index:
|
50 |
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l-v2.0
|
51 |
results:
|
@@ -57,20 +55,8 @@ model-index:
|
|
57 |
type: triplet-dev
|
58 |
metrics:
|
59 |
- type: cosine_accuracy
|
60 |
-
value: 0.
|
61 |
name: Cosine Accuracy
|
62 |
-
- type: dot_accuracy
|
63 |
-
value: 0.066
|
64 |
-
name: Dot Accuracy
|
65 |
-
- type: manhattan_accuracy
|
66 |
-
value: 0.933
|
67 |
-
name: Manhattan Accuracy
|
68 |
-
- type: euclidean_accuracy
|
69 |
-
value: 0.932
|
70 |
-
name: Euclidean Accuracy
|
71 |
-
- type: max_accuracy
|
72 |
-
value: 0.933
|
73 |
-
name: Max Accuracy
|
74 |
---
|
75 |
|
76 |
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l-v2.0
|
@@ -83,7 +69,7 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [S
|
|
83 |
- **Model Type:** Sentence Transformer
|
84 |
- **Base model:** [Snowflake/snowflake-arctic-embed-l-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-l-v2.0) <!-- at revision 7f311bb640ad3babc0a4e3a8873240dcba44c9d2 -->
|
85 |
- **Maximum Sequence Length:** 8192 tokens
|
86 |
-
- **Output Dimensionality:** 1024
|
87 |
- **Similarity Function:** Cosine Similarity
|
88 |
- **Training Dataset:**
|
89 |
- json
|
@@ -124,9 +110,9 @@ from sentence_transformers import SentenceTransformer
|
|
124 |
model = SentenceTransformer("sentence_transformers_model_id")
|
125 |
# Run inference
|
126 |
sentences = [
|
127 |
-
'
|
128 |
-
'
|
129 |
-
'
|
130 |
]
|
131 |
embeddings = model.encode(sentences)
|
132 |
print(embeddings.shape)
|
@@ -167,16 +153,13 @@ You can finetune this model on your own dataset.
|
|
167 |
### Metrics
|
168 |
|
169 |
#### Triplet
|
|
|
170 |
* Dataset: `triplet-dev`
|
171 |
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
172 |
|
173 |
| Metric | Value |
|
174 |
|:--------------------|:----------|
|
175 |
-
| **cosine_accuracy** | **0.
|
176 |
-
| dot_accuracy | 0.066 |
|
177 |
-
| manhattan_accuracy | 0.933 |
|
178 |
-
| euclidean_accuracy | 0.932 |
|
179 |
-
| max_accuracy | 0.933 |
|
180 |
|
181 |
<!--
|
182 |
## Bias, Risks and Limitations
|
@@ -200,16 +183,16 @@ You can finetune this model on your own dataset.
|
|
200 |
* Size: 10,053 training samples
|
201 |
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
202 |
* Approximate statistics based on the first 1000 samples:
|
203 |
-
| | anchor | positive | negative
|
204 |
-
|
205 |
-
| type | string | string | string
|
206 |
-
| details | <ul><li>min: 4 tokens</li><li>mean: 10.
|
207 |
* Samples:
|
208 |
-
| anchor
|
209 |
-
|
210 |
-
| <code>
|
211 |
-
| <code>
|
212 |
-
| <code>
|
213 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
214 |
```json
|
215 |
{
|
@@ -222,9 +205,8 @@ You can finetune this model on your own dataset.
|
|
222 |
#### Non-Default Hyperparameters
|
223 |
|
224 |
- `eval_strategy`: steps
|
225 |
-
- `per_device_train_batch_size`:
|
226 |
-
- `per_device_eval_batch_size`:
|
227 |
-
- `learning_rate`: 0.001
|
228 |
- `num_train_epochs`: 1
|
229 |
- `lr_scheduler_type`: cosine_with_restarts
|
230 |
- `warmup_ratio`: 0.1
|
@@ -238,14 +220,14 @@ You can finetune this model on your own dataset.
|
|
238 |
- `do_predict`: False
|
239 |
- `eval_strategy`: steps
|
240 |
- `prediction_loss_only`: True
|
241 |
-
- `per_device_train_batch_size`:
|
242 |
-
- `per_device_eval_batch_size`:
|
243 |
- `per_gpu_train_batch_size`: None
|
244 |
- `per_gpu_eval_batch_size`: None
|
245 |
- `gradient_accumulation_steps`: 1
|
246 |
- `eval_accumulation_steps`: None
|
247 |
- `torch_empty_cache_steps`: None
|
248 |
-
- `learning_rate`:
|
249 |
- `weight_decay`: 0.0
|
250 |
- `adam_beta1`: 0.9
|
251 |
- `adam_beta2`: 0.999
|
@@ -316,11 +298,12 @@ You can finetune this model on your own dataset.
|
|
316 |
- `resume_from_checkpoint`: None
|
317 |
- `hub_model_id`: None
|
318 |
- `hub_strategy`: every_save
|
319 |
-
- `hub_private_repo`:
|
320 |
- `hub_always_push`: False
|
321 |
- `gradient_checkpointing`: False
|
322 |
- `gradient_checkpointing_kwargs`: None
|
323 |
- `include_inputs_for_metrics`: False
|
|
|
324 |
- `eval_do_concat_batches`: True
|
325 |
- `fp16_backend`: auto
|
326 |
- `push_to_hub_model_id`: None
|
@@ -344,343 +327,106 @@ You can finetune this model on your own dataset.
|
|
344 |
- `eval_on_start`: False
|
345 |
- `use_liger_kernel`: False
|
346 |
- `eval_use_gather_object`: False
|
|
|
|
|
347 |
- `batch_sampler`: no_duplicates
|
348 |
- `multi_dataset_batch_sampler`: proportional
|
349 |
|
350 |
</details>
|
351 |
|
352 |
### Training Logs
|
353 |
-
<details><summary>Click to expand</summary>
|
354 |
-
|
355 |
| Epoch | Step | Training Loss | triplet-dev_cosine_accuracy |
|
356 |
|:------:|:----:|:-------------:|:---------------------------:|
|
357 |
| 0 | 0 | - | 0.58 |
|
358 |
-
| 0.
|
359 |
-
| 0.
|
360 |
-
| 0.
|
361 |
-
| 0.
|
362 |
-
| 0.
|
363 |
-
| 0.
|
364 |
-
| 0.
|
365 |
-
| 0.
|
366 |
-
| 0.
|
367 |
-
| 0.
|
368 |
-
| 0.
|
369 |
-
| 0.
|
370 |
-
| 0.
|
371 |
-
| 0.
|
372 |
-
| 0.
|
373 |
-
| 0.
|
374 |
-
| 0.
|
375 |
-
| 0.
|
376 |
-
| 0.
|
377 |
-
| 0.
|
378 |
-
| 0.
|
379 |
-
| 0.
|
380 |
-
| 0.
|
381 |
-
| 0.
|
382 |
-
| 0.
|
383 |
-
| 0.
|
384 |
-
| 0.
|
385 |
-
| 0.
|
386 |
-
| 0.
|
387 |
-
| 0.
|
388 |
-
| 0.
|
389 |
-
| 0.
|
390 |
-
| 0.
|
391 |
-
| 0.
|
392 |
-
| 0.
|
393 |
-
| 0.
|
394 |
-
| 0.
|
395 |
-
| 0.
|
396 |
-
| 0.
|
397 |
-
| 0.
|
398 |
-
| 0.
|
399 |
-
| 0.
|
400 |
-
| 0.
|
401 |
-
| 0.
|
402 |
-
| 0.
|
403 |
-
| 0.
|
404 |
-
| 0.
|
405 |
-
| 0.
|
406 |
-
| 0.
|
407 |
-
| 0.
|
408 |
-
| 0.
|
409 |
-
| 0.
|
410 |
-
| 0.
|
411 |
-
| 0.
|
412 |
-
| 0.
|
413 |
-
| 0.
|
414 |
-
| 0.
|
415 |
-
| 0.
|
416 |
-
| 0.
|
417 |
-
| 0.
|
418 |
-
| 0.
|
419 |
-
| 0.
|
420 |
-
| 0.
|
421 |
-
| 0.
|
422 |
-
| 0.
|
423 |
-
| 0.
|
424 |
-
| 0.
|
425 |
-
| 0.
|
426 |
-
| 0.
|
427 |
-
| 0.
|
428 |
-
| 0.
|
429 |
-
| 0.
|
430 |
-
| 0.
|
431 |
-
| 0.
|
432 |
-
| 0.
|
433 |
-
| 0.
|
434 |
-
| 0.
|
435 |
-
| 0.
|
436 |
-
| 0
|
437 |
-
| 0.2540 | 80 | 0.6003 | 0.909 |
|
438 |
-
| 0.2571 | 81 | 0.4779 | - |
|
439 |
-
| 0.2603 | 82 | 0.8126 | - |
|
440 |
-
| 0.2635 | 83 | 0.381 | - |
|
441 |
-
| 0.2667 | 84 | 0.2567 | - |
|
442 |
-
| 0.2698 | 85 | 0.4422 | - |
|
443 |
-
| 0.2730 | 86 | 0.592 | - |
|
444 |
-
| 0.2762 | 87 | 0.5947 | - |
|
445 |
-
| 0.2794 | 88 | 0.3042 | - |
|
446 |
-
| 0.2825 | 89 | 0.5894 | - |
|
447 |
-
| 0.2857 | 90 | 0.3807 | 0.904 |
|
448 |
-
| 0.2889 | 91 | 0.4121 | - |
|
449 |
-
| 0.2921 | 92 | 0.4026 | - |
|
450 |
-
| 0.2952 | 93 | 0.5424 | - |
|
451 |
-
| 0.2984 | 94 | 0.359 | - |
|
452 |
-
| 0.3016 | 95 | 0.3766 | - |
|
453 |
-
| 0.3048 | 96 | 0.9112 | - |
|
454 |
-
| 0.3079 | 97 | 0.5143 | - |
|
455 |
-
| 0.3111 | 98 | 0.2945 | - |
|
456 |
-
| 0.3143 | 99 | 0.7727 | - |
|
457 |
-
| 0.3175 | 100 | 0.375 | 0.91 |
|
458 |
-
| 0.3206 | 101 | 0.6702 | - |
|
459 |
-
| 0.3238 | 102 | 0.8303 | - |
|
460 |
-
| 0.3270 | 103 | 0.4229 | - |
|
461 |
-
| 0.3302 | 104 | 0.4837 | - |
|
462 |
-
| 0.3333 | 105 | 0.4012 | - |
|
463 |
-
| 0.3365 | 106 | 0.4679 | - |
|
464 |
-
| 0.3397 | 107 | 0.2605 | - |
|
465 |
-
| 0.3429 | 108 | 0.292 | - |
|
466 |
-
| 0.3460 | 109 | 0.2689 | - |
|
467 |
-
| 0.3492 | 110 | 0.5062 | 0.899 |
|
468 |
-
| 0.3524 | 111 | 0.9799 | - |
|
469 |
-
| 0.3556 | 112 | 0.2778 | - |
|
470 |
-
| 0.3587 | 113 | 0.6223 | - |
|
471 |
-
| 0.3619 | 114 | 0.4111 | - |
|
472 |
-
| 0.3651 | 115 | 0.4589 | - |
|
473 |
-
| 0.3683 | 116 | 0.4762 | - |
|
474 |
-
| 0.3714 | 117 | 0.5911 | - |
|
475 |
-
| 0.3746 | 118 | 0.4893 | - |
|
476 |
-
| 0.3778 | 119 | 0.2245 | - |
|
477 |
-
| 0.3810 | 120 | 0.5912 | 0.923 |
|
478 |
-
| 0.3841 | 121 | 0.4241 | - |
|
479 |
-
| 0.3873 | 122 | 0.7066 | - |
|
480 |
-
| 0.3905 | 123 | 0.4916 | - |
|
481 |
-
| 0.3937 | 124 | 0.5478 | - |
|
482 |
-
| 0.3968 | 125 | 0.401 | - |
|
483 |
-
| 0.4 | 126 | 0.3737 | - |
|
484 |
-
| 0.4032 | 127 | 0.4901 | - |
|
485 |
-
| 0.4063 | 128 | 0.7427 | - |
|
486 |
-
| 0.4095 | 129 | 0.6794 | - |
|
487 |
-
| 0.4127 | 130 | 0.3169 | 0.921 |
|
488 |
-
| 0.4159 | 131 | 0.3946 | - |
|
489 |
-
| 0.4190 | 132 | 0.2456 | - |
|
490 |
-
| 0.4222 | 133 | 0.5542 | - |
|
491 |
-
| 0.4254 | 134 | 0.2707 | - |
|
492 |
-
| 0.4286 | 135 | 0.6747 | - |
|
493 |
-
| 0.4317 | 136 | 0.336 | - |
|
494 |
-
| 0.4349 | 137 | 0.5647 | - |
|
495 |
-
| 0.4381 | 138 | 0.2744 | - |
|
496 |
-
| 0.4413 | 139 | 0.4579 | - |
|
497 |
-
| 0.4444 | 140 | 0.2718 | 0.899 |
|
498 |
-
| 0.4476 | 141 | 0.7238 | - |
|
499 |
-
| 0.4508 | 142 | 0.2833 | - |
|
500 |
-
| 0.4540 | 143 | 0.6608 | - |
|
501 |
-
| 0.4571 | 144 | 0.4052 | - |
|
502 |
-
| 0.4603 | 145 | 0.3781 | - |
|
503 |
-
| 0.4635 | 146 | 0.2905 | - |
|
504 |
-
| 0.4667 | 147 | 0.4854 | - |
|
505 |
-
| 0.4698 | 148 | 0.3493 | - |
|
506 |
-
| 0.4730 | 149 | 0.4885 | - |
|
507 |
-
| 0.4762 | 150 | 0.3831 | 0.921 |
|
508 |
-
| 0.4794 | 151 | 0.4424 | - |
|
509 |
-
| 0.4825 | 152 | 0.4305 | - |
|
510 |
-
| 0.4857 | 153 | 0.5456 | - |
|
511 |
-
| 0.4889 | 154 | 0.4577 | - |
|
512 |
-
| 0.4921 | 155 | 0.2772 | - |
|
513 |
-
| 0.4952 | 156 | 0.5053 | - |
|
514 |
-
| 0.4984 | 157 | 0.2823 | - |
|
515 |
-
| 0.5016 | 158 | 0.4512 | - |
|
516 |
-
| 0.5048 | 159 | 0.3884 | - |
|
517 |
-
| 0.5079 | 160 | 0.6302 | 0.922 |
|
518 |
-
| 0.5111 | 161 | 0.5108 | - |
|
519 |
-
| 0.5143 | 162 | 0.3148 | - |
|
520 |
-
| 0.5175 | 163 | 0.3471 | - |
|
521 |
-
| 0.5206 | 164 | 0.3473 | - |
|
522 |
-
| 0.5238 | 165 | 0.8119 | - |
|
523 |
-
| 0.5270 | 166 | 0.5589 | - |
|
524 |
-
| 0.5302 | 167 | 0.6691 | - |
|
525 |
-
| 0.5333 | 168 | 0.5297 | - |
|
526 |
-
| 0.5365 | 169 | 0.4171 | - |
|
527 |
-
| 0.5397 | 170 | 0.3299 | 0.92 |
|
528 |
-
| 0.5429 | 171 | 0.3409 | - |
|
529 |
-
| 0.5460 | 172 | 0.4409 | - |
|
530 |
-
| 0.5492 | 173 | 0.2566 | - |
|
531 |
-
| 0.5524 | 174 | 0.2815 | - |
|
532 |
-
| 0.5556 | 175 | 0.401 | - |
|
533 |
-
| 0.5587 | 176 | 0.346 | - |
|
534 |
-
| 0.5619 | 177 | 0.285 | - |
|
535 |
-
| 0.5651 | 178 | 0.3536 | - |
|
536 |
-
| 0.5683 | 179 | 0.3927 | - |
|
537 |
-
| 0.5714 | 180 | 0.5802 | 0.92 |
|
538 |
-
| 0.5746 | 181 | 0.17 | - |
|
539 |
-
| 0.5778 | 182 | 0.679 | - |
|
540 |
-
| 0.5810 | 183 | 0.3586 | - |
|
541 |
-
| 0.5841 | 184 | 0.4641 | - |
|
542 |
-
| 0.5873 | 185 | 0.7828 | - |
|
543 |
-
| 0.5905 | 186 | 0.6755 | - |
|
544 |
-
| 0.5937 | 187 | 0.1829 | - |
|
545 |
-
| 0.5968 | 188 | 0.4509 | - |
|
546 |
-
| 0.6 | 189 | 0.5535 | - |
|
547 |
-
| 0.6032 | 190 | 0.28 | 0.93 |
|
548 |
-
| 0.6063 | 191 | 0.5103 | - |
|
549 |
-
| 0.6095 | 192 | 0.5829 | - |
|
550 |
-
| 0.6127 | 193 | 0.6395 | - |
|
551 |
-
| 0.6159 | 194 | 0.3645 | - |
|
552 |
-
| 0.6190 | 195 | 0.6134 | - |
|
553 |
-
| 0.6222 | 196 | 0.3655 | - |
|
554 |
-
| 0.6254 | 197 | 0.3102 | - |
|
555 |
-
| 0.6286 | 198 | 0.6075 | - |
|
556 |
-
| 0.6317 | 199 | 0.2264 | - |
|
557 |
-
| 0.6349 | 200 | 0.5285 | 0.92 |
|
558 |
-
| 0.6381 | 201 | 0.5746 | - |
|
559 |
-
| 0.6413 | 202 | 0.5452 | - |
|
560 |
-
| 0.6444 | 203 | 0.3349 | - |
|
561 |
-
| 0.6476 | 204 | 0.3771 | - |
|
562 |
-
| 0.6508 | 205 | 0.5956 | - |
|
563 |
-
| 0.6540 | 206 | 0.3077 | - |
|
564 |
-
| 0.6571 | 207 | 0.5275 | - |
|
565 |
-
| 0.6603 | 208 | 0.3552 | - |
|
566 |
-
| 0.6635 | 209 | 0.385 | - |
|
567 |
-
| 0.6667 | 210 | 0.2846 | 0.933 |
|
568 |
-
| 0.6698 | 211 | 0.3865 | - |
|
569 |
-
| 0.6730 | 212 | 0.4522 | - |
|
570 |
-
| 0.6762 | 213 | 0.0635 | - |
|
571 |
-
| 0.6794 | 214 | 0.5131 | - |
|
572 |
-
| 0.6825 | 215 | 0.6883 | - |
|
573 |
-
| 0.6857 | 216 | 0.464 | - |
|
574 |
-
| 0.6889 | 217 | 0.666 | - |
|
575 |
-
| 0.6921 | 218 | 0.7519 | - |
|
576 |
-
| 0.6952 | 219 | 0.5231 | - |
|
577 |
-
| 0.6984 | 220 | 0.1605 | 0.927 |
|
578 |
-
| 0.7016 | 221 | 0.2982 | - |
|
579 |
-
| 0.7048 | 222 | 0.47 | - |
|
580 |
-
| 0.7079 | 223 | 0.3701 | - |
|
581 |
-
| 0.7111 | 224 | 0.4694 | - |
|
582 |
-
| 0.7143 | 225 | 0.1195 | - |
|
583 |
-
| 0.7175 | 226 | 0.3682 | - |
|
584 |
-
| 0.7206 | 227 | 0.311 | - |
|
585 |
-
| 0.7238 | 228 | 0.5959 | - |
|
586 |
-
| 0.7270 | 229 | 0.4565 | - |
|
587 |
-
| 0.7302 | 230 | 0.1803 | 0.926 |
|
588 |
-
| 0.7333 | 231 | 0.4599 | - |
|
589 |
-
| 0.7365 | 232 | 0.2979 | - |
|
590 |
-
| 0.7397 | 233 | 0.433 | - |
|
591 |
-
| 0.7429 | 234 | 0.3443 | - |
|
592 |
-
| 0.7460 | 235 | 0.524 | - |
|
593 |
-
| 0.7492 | 236 | 0.4083 | - |
|
594 |
-
| 0.7524 | 237 | 0.3159 | - |
|
595 |
-
| 0.7556 | 238 | 0.4017 | - |
|
596 |
-
| 0.7587 | 239 | 0.3955 | - |
|
597 |
-
| 0.7619 | 240 | 0.2405 | 0.928 |
|
598 |
-
| 0.7651 | 241 | 0.3249 | - |
|
599 |
-
| 0.7683 | 242 | 0.2882 | - |
|
600 |
-
| 0.7714 | 243 | 0.6232 | - |
|
601 |
-
| 0.7746 | 244 | 0.5724 | - |
|
602 |
-
| 0.7778 | 245 | 0.4484 | - |
|
603 |
-
| 0.7810 | 246 | 0.4394 | - |
|
604 |
-
| 0.7841 | 247 | 0.4487 | - |
|
605 |
-
| 0.7873 | 248 | 0.1622 | - |
|
606 |
-
| 0.7905 | 249 | 0.2732 | - |
|
607 |
-
| 0.7937 | 250 | 0.4144 | 0.93 |
|
608 |
-
| 0.7968 | 251 | 0.3666 | - |
|
609 |
-
| 0.8 | 252 | 0.8073 | - |
|
610 |
-
| 0.8032 | 253 | 0.1864 | - |
|
611 |
-
| 0.8063 | 254 | 0.7214 | - |
|
612 |
-
| 0.8095 | 255 | 0.3487 | - |
|
613 |
-
| 0.8127 | 256 | 0.1865 | - |
|
614 |
-
| 0.8159 | 257 | 0.4027 | - |
|
615 |
-
| 0.8190 | 258 | 0.8281 | - |
|
616 |
-
| 0.8222 | 259 | 0.5036 | - |
|
617 |
-
| 0.8254 | 260 | 0.2968 | 0.922 |
|
618 |
-
| 0.8286 | 261 | 0.4473 | - |
|
619 |
-
| 0.8317 | 262 | 0.2062 | - |
|
620 |
-
| 0.8349 | 263 | 0.4047 | - |
|
621 |
-
| 0.8381 | 264 | 0.1914 | - |
|
622 |
-
| 0.8413 | 265 | 0.3805 | - |
|
623 |
-
| 0.8444 | 266 | 0.1199 | - |
|
624 |
-
| 0.8476 | 267 | 0.2759 | - |
|
625 |
-
| 0.8508 | 268 | 0.2259 | - |
|
626 |
-
| 0.8540 | 269 | 0.2683 | - |
|
627 |
-
| 0.8571 | 270 | 0.6274 | 0.935 |
|
628 |
-
| 0.8603 | 271 | 0.4319 | - |
|
629 |
-
| 0.8635 | 272 | 0.5258 | - |
|
630 |
-
| 0.8667 | 273 | 0.2761 | - |
|
631 |
-
| 0.8698 | 274 | 0.5513 | - |
|
632 |
-
| 0.8730 | 275 | 0.1808 | - |
|
633 |
-
| 0.8762 | 276 | 0.495 | - |
|
634 |
-
| 0.8794 | 277 | 0.2988 | - |
|
635 |
-
| 0.8825 | 278 | 0.5273 | - |
|
636 |
-
| 0.8857 | 279 | 0.7676 | - |
|
637 |
-
| 0.8889 | 280 | 0.5209 | 0.933 |
|
638 |
-
| 0.8921 | 281 | 0.4381 | - |
|
639 |
-
| 0.8952 | 282 | 0.5668 | - |
|
640 |
-
| 0.8984 | 283 | 0.5858 | - |
|
641 |
-
| 0.9016 | 284 | 0.7875 | - |
|
642 |
-
| 0.9048 | 285 | 0.2061 | - |
|
643 |
-
| 0.9079 | 286 | 0.268 | - |
|
644 |
-
| 0.9111 | 287 | 0.2322 | - |
|
645 |
-
| 0.9143 | 288 | 0.233 | - |
|
646 |
-
| 0.9175 | 289 | 0.3316 | - |
|
647 |
-
| 0.9206 | 290 | 0.5176 | 0.932 |
|
648 |
-
| 0.9238 | 291 | 0.3647 | - |
|
649 |
-
| 0.9270 | 292 | 0.5906 | - |
|
650 |
-
| 0.9302 | 293 | 0.5098 | - |
|
651 |
-
| 0.9333 | 294 | 0.3505 | - |
|
652 |
-
| 0.9365 | 295 | 0.379 | - |
|
653 |
-
| 0.9397 | 296 | 0.5529 | - |
|
654 |
-
| 0.9429 | 297 | 0.4044 | - |
|
655 |
-
| 0.9460 | 298 | 0.4637 | - |
|
656 |
-
| 0.9492 | 299 | 0.4014 | - |
|
657 |
-
| 0.9524 | 300 | 0.692 | 0.932 |
|
658 |
-
| 0.9556 | 301 | 0.6072 | - |
|
659 |
-
| 0.9587 | 302 | 0.2852 | - |
|
660 |
-
| 0.9619 | 303 | 0.3548 | - |
|
661 |
-
| 0.9651 | 304 | 0.7898 | - |
|
662 |
-
| 0.9683 | 305 | 0.4211 | - |
|
663 |
-
| 0.9714 | 306 | 0.2773 | - |
|
664 |
-
| 0.9746 | 307 | 0.4182 | - |
|
665 |
-
| 0.9778 | 308 | 0.2633 | - |
|
666 |
-
| 0.9810 | 309 | 0.6833 | - |
|
667 |
-
| 0.9841 | 310 | 0.2619 | 0.932 |
|
668 |
-
| 0.9873 | 311 | 0.3085 | - |
|
669 |
-
| 0.9905 | 312 | 0.3142 | - |
|
670 |
-
| 0.9937 | 313 | 0.221 | - |
|
671 |
-
| 0.9968 | 314 | 0.348 | - |
|
672 |
-
| 1.0 | 315 | 0.0322 | 0.932 |
|
673 |
|
674 |
-
</details>
|
675 |
|
676 |
### Framework Versions
|
677 |
-
- Python: 3.
|
678 |
-
- Sentence Transformers: 3.
|
679 |
-
- Transformers: 4.
|
680 |
-
- PyTorch: 2.5.
|
681 |
-
- Accelerate: 1.
|
682 |
- Datasets: 2.19.0
|
683 |
-
- Tokenizers: 0.
|
684 |
|
685 |
## Citation
|
686 |
|
|
|
8 |
- loss:MultipleNegativesRankingLoss
|
9 |
base_model: Snowflake/snowflake-arctic-embed-l-v2.0
|
10 |
widget:
|
11 |
+
- source_sentence: Nursing Reform
|
12 |
sentences:
|
13 |
+
- 'Staff nurses speak out on reform. '
|
14 |
+
- 'Synthesis of graphene with different layers on paper-like sintered stainless
|
15 |
+
steel fibers and its application as a metal-free catalyst for catalytic wet peroxide
|
16 |
+
oxidation of phenol. '
|
17 |
+
- 'Nursing reformation. '
|
18 |
+
- source_sentence: NiTiO3 composite
|
19 |
sentences:
|
20 |
+
- 'Fabrication and electromagnetic performance of talc/NiTiO 3 composite. '
|
21 |
+
- 'Nickel-titanium usage and breakage: an update. '
|
22 |
+
- 'Innervational plasticity of the oculomotor system. '
|
23 |
+
- source_sentence: Single-Session Competency Framework
|
|
|
|
|
|
|
24 |
sentences:
|
25 |
+
- 'Competency assessment: one step at the time. '
|
26 |
+
- 'Optothermal molecule trapping by opposing fluid flow with thermophoretic drift. '
|
27 |
+
- 'Describing a Clinical Group Coding Method for Identifying Competencies in an
|
28 |
+
Allied Health Single Session. '
|
29 |
+
- source_sentence: Streptococcal myositis treatment outcomes
|
30 |
sentences:
|
31 |
+
- 'Evaluation of penicillin and hyperbaric oxygen in the treatment of streptococcal
|
32 |
+
myositis. '
|
33 |
+
- 'Polymicrobial myositis. '
|
34 |
+
- 'Parse''s criteria for evaluation of theory with a comparison of Fawcett''s and
|
35 |
+
Parse''s approaches. '
|
36 |
+
- source_sentence: Risk-based water quality monitoring framework
|
37 |
sentences:
|
38 |
+
- 'Development of a new risk-based framework to guide investment in water quality
|
39 |
+
monitoring. '
|
40 |
+
- 'NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive
|
41 |
+
oxygen species-dependent signal transduction. '
|
42 |
+
- 'Water quality monitoring strategies - A review and future perspectives. '
|
43 |
pipeline_tag: sentence-similarity
|
44 |
library_name: sentence-transformers
|
45 |
metrics:
|
46 |
- cosine_accuracy
|
|
|
|
|
|
|
|
|
47 |
model-index:
|
48 |
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l-v2.0
|
49 |
results:
|
|
|
55 |
type: triplet-dev
|
56 |
metrics:
|
57 |
- type: cosine_accuracy
|
58 |
+
value: 0.802
|
59 |
name: Cosine Accuracy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
---
|
61 |
|
62 |
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l-v2.0
|
|
|
69 |
- **Model Type:** Sentence Transformer
|
70 |
- **Base model:** [Snowflake/snowflake-arctic-embed-l-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-l-v2.0) <!-- at revision 7f311bb640ad3babc0a4e3a8873240dcba44c9d2 -->
|
71 |
- **Maximum Sequence Length:** 8192 tokens
|
72 |
+
- **Output Dimensionality:** 1024 dimensions
|
73 |
- **Similarity Function:** Cosine Similarity
|
74 |
- **Training Dataset:**
|
75 |
- json
|
|
|
110 |
model = SentenceTransformer("sentence_transformers_model_id")
|
111 |
# Run inference
|
112 |
sentences = [
|
113 |
+
'Risk-based water quality monitoring framework',
|
114 |
+
'Development of a new risk-based framework to guide investment in water quality monitoring. ',
|
115 |
+
'Water quality monitoring strategies - A review and future perspectives. ',
|
116 |
]
|
117 |
embeddings = model.encode(sentences)
|
118 |
print(embeddings.shape)
|
|
|
153 |
### Metrics
|
154 |
|
155 |
#### Triplet
|
156 |
+
|
157 |
* Dataset: `triplet-dev`
|
158 |
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
159 |
|
160 |
| Metric | Value |
|
161 |
|:--------------------|:----------|
|
162 |
+
| **cosine_accuracy** | **0.802** |
|
|
|
|
|
|
|
|
|
163 |
|
164 |
<!--
|
165 |
## Bias, Risks and Limitations
|
|
|
183 |
* Size: 10,053 training samples
|
184 |
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
185 |
* Approximate statistics based on the first 1000 samples:
|
186 |
+
| | anchor | positive | negative |
|
187 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
188 |
+
| type | string | string | string |
|
189 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 10.58 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 26.91 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 15.99 tokens</li><li>max: 61 tokens</li></ul> |
|
190 |
* Samples:
|
191 |
+
| anchor | positive | negative |
|
192 |
+
|:--------------------------------------------------|:--------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------|
|
193 |
+
| <code>Pediatric Infectious Disease Control</code> | <code>[Urgent tasks in scientific studies concerning the control of infectious diseases in children]. </code> | <code>Pediatric workforce: a look at pediatric infectious diseases data from the American Board of Pediatrics. </code> |
|
194 |
+
| <code>Thermal coefficient of phase shift</code> | <code>Thermal characteristics of phase shift in jacketed optical fibers. </code> | <code>Thermal effects. </code> |
|
195 |
+
| <code>Renal biomarkers in heart failure</code> | <code>Current and novel renal biomarkers in heart failure. </code> | <code>Cardiac biomarkers of heart failure in chronic kidney disease. </code> |
|
196 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
197 |
```json
|
198 |
{
|
|
|
205 |
#### Non-Default Hyperparameters
|
206 |
|
207 |
- `eval_strategy`: steps
|
208 |
+
- `per_device_train_batch_size`: 128
|
209 |
+
- `per_device_eval_batch_size`: 128
|
|
|
210 |
- `num_train_epochs`: 1
|
211 |
- `lr_scheduler_type`: cosine_with_restarts
|
212 |
- `warmup_ratio`: 0.1
|
|
|
220 |
- `do_predict`: False
|
221 |
- `eval_strategy`: steps
|
222 |
- `prediction_loss_only`: True
|
223 |
+
- `per_device_train_batch_size`: 128
|
224 |
+
- `per_device_eval_batch_size`: 128
|
225 |
- `per_gpu_train_batch_size`: None
|
226 |
- `per_gpu_eval_batch_size`: None
|
227 |
- `gradient_accumulation_steps`: 1
|
228 |
- `eval_accumulation_steps`: None
|
229 |
- `torch_empty_cache_steps`: None
|
230 |
+
- `learning_rate`: 5e-05
|
231 |
- `weight_decay`: 0.0
|
232 |
- `adam_beta1`: 0.9
|
233 |
- `adam_beta2`: 0.999
|
|
|
298 |
- `resume_from_checkpoint`: None
|
299 |
- `hub_model_id`: None
|
300 |
- `hub_strategy`: every_save
|
301 |
+
- `hub_private_repo`: None
|
302 |
- `hub_always_push`: False
|
303 |
- `gradient_checkpointing`: False
|
304 |
- `gradient_checkpointing_kwargs`: None
|
305 |
- `include_inputs_for_metrics`: False
|
306 |
+
- `include_for_metrics`: []
|
307 |
- `eval_do_concat_batches`: True
|
308 |
- `fp16_backend`: auto
|
309 |
- `push_to_hub_model_id`: None
|
|
|
327 |
- `eval_on_start`: False
|
328 |
- `use_liger_kernel`: False
|
329 |
- `eval_use_gather_object`: False
|
330 |
+
- `average_tokens_across_devices`: False
|
331 |
+
- `prompts`: None
|
332 |
- `batch_sampler`: no_duplicates
|
333 |
- `multi_dataset_batch_sampler`: proportional
|
334 |
|
335 |
</details>
|
336 |
|
337 |
### Training Logs
|
|
|
|
|
338 |
| Epoch | Step | Training Loss | triplet-dev_cosine_accuracy |
|
339 |
|:------:|:----:|:-------------:|:---------------------------:|
|
340 |
| 0 | 0 | - | 0.58 |
|
341 |
+
| 0.0127 | 1 | 1.677 | - |
|
342 |
+
| 0.0253 | 2 | 1.7295 | - |
|
343 |
+
| 0.0380 | 3 | 1.6713 | - |
|
344 |
+
| 0.0506 | 4 | 1.4761 | - |
|
345 |
+
| 0.0633 | 5 | 1.3731 | - |
|
346 |
+
| 0.0759 | 6 | 1.8333 | - |
|
347 |
+
| 0.0886 | 7 | 1.3218 | - |
|
348 |
+
| 0.1013 | 8 | 1.1539 | - |
|
349 |
+
| 0.1139 | 9 | 1.4003 | - |
|
350 |
+
| 0.1266 | 10 | 1.4514 | - |
|
351 |
+
| 0.1392 | 11 | 1.0803 | - |
|
352 |
+
| 0.1519 | 12 | 1.183 | - |
|
353 |
+
| 0.1646 | 13 | 0.9984 | - |
|
354 |
+
| 0.1772 | 14 | 1.2043 | - |
|
355 |
+
| 0.1899 | 15 | 1.1367 | - |
|
356 |
+
| 0.2025 | 16 | 1.1863 | - |
|
357 |
+
| 0.2152 | 17 | 1.0185 | - |
|
358 |
+
| 0.2278 | 18 | 0.9038 | - |
|
359 |
+
| 0.2405 | 19 | 0.8942 | - |
|
360 |
+
| 0.2532 | 20 | 1.0396 | - |
|
361 |
+
| 0.2658 | 21 | 1.1067 | - |
|
362 |
+
| 0.2785 | 22 | 1.0281 | - |
|
363 |
+
| 0.2911 | 23 | 1.1479 | - |
|
364 |
+
| 0.3038 | 24 | 1.2893 | - |
|
365 |
+
| 0.3165 | 25 | 1.0388 | - |
|
366 |
+
| 0.3291 | 26 | 1.1925 | - |
|
367 |
+
| 0.3418 | 27 | 0.9564 | - |
|
368 |
+
| 0.3544 | 28 | 0.8533 | - |
|
369 |
+
| 0.3671 | 29 | 0.9999 | - |
|
370 |
+
| 0.3797 | 30 | 1.126 | - |
|
371 |
+
| 0.3924 | 31 | 0.9898 | - |
|
372 |
+
| 0.4051 | 32 | 0.8786 | - |
|
373 |
+
| 0.4177 | 33 | 0.9878 | - |
|
374 |
+
| 0.4304 | 34 | 1.0988 | - |
|
375 |
+
| 0.4430 | 35 | 0.9721 | - |
|
376 |
+
| 0.4557 | 36 | 0.838 | - |
|
377 |
+
| 0.4684 | 37 | 0.9935 | - |
|
378 |
+
| 0.4810 | 38 | 1.1439 | - |
|
379 |
+
| 0.4937 | 39 | 0.7076 | - |
|
380 |
+
| 0.5063 | 40 | 1.0033 | - |
|
381 |
+
| 0.5190 | 41 | 1.0411 | - |
|
382 |
+
| 0.5316 | 42 | 0.8646 | - |
|
383 |
+
| 0.5443 | 43 | 0.8991 | - |
|
384 |
+
| 0.5570 | 44 | 0.6337 | - |
|
385 |
+
| 0.5696 | 45 | 1.0695 | - |
|
386 |
+
| 0.5823 | 46 | 0.9144 | - |
|
387 |
+
| 0.5949 | 47 | 0.9248 | - |
|
388 |
+
| 0.6076 | 48 | 0.7711 | - |
|
389 |
+
| 0.6203 | 49 | 1.0001 | - |
|
390 |
+
| 0.6329 | 50 | 1.0151 | - |
|
391 |
+
| 0.6456 | 51 | 1.06 | - |
|
392 |
+
| 0.6582 | 52 | 0.8105 | - |
|
393 |
+
| 0.6709 | 53 | 0.6892 | - |
|
394 |
+
| 0.6835 | 54 | 1.1341 | - |
|
395 |
+
| 0.6962 | 55 | 0.9726 | - |
|
396 |
+
| 0.7089 | 56 | 0.8783 | - |
|
397 |
+
| 0.7215 | 57 | 0.8084 | - |
|
398 |
+
| 0.7342 | 58 | 1.089 | - |
|
399 |
+
| 0.7468 | 59 | 0.8486 | - |
|
400 |
+
| 0.7595 | 60 | 0.8507 | - |
|
401 |
+
| 0.7722 | 61 | 0.9502 | - |
|
402 |
+
| 0.7848 | 62 | 0.8178 | - |
|
403 |
+
| 0.7975 | 63 | 1.0142 | - |
|
404 |
+
| 0.8101 | 64 | 0.9516 | - |
|
405 |
+
| 0.8228 | 65 | 0.9399 | - |
|
406 |
+
| 0.8354 | 66 | 0.7602 | - |
|
407 |
+
| 0.8481 | 67 | 0.8389 | - |
|
408 |
+
| 0.8608 | 68 | 0.9234 | - |
|
409 |
+
| 0.8734 | 69 | 0.9747 | - |
|
410 |
+
| 0.8861 | 70 | 1.1591 | - |
|
411 |
+
| 0.8987 | 71 | 1.0074 | - |
|
412 |
+
| 0.9114 | 72 | 0.8169 | - |
|
413 |
+
| 0.9241 | 73 | 0.9561 | - |
|
414 |
+
| 0.9367 | 74 | 0.9406 | - |
|
415 |
+
| 0.9494 | 75 | 0.9603 | - |
|
416 |
+
| 0.9620 | 76 | 0.8758 | - |
|
417 |
+
| 0.9747 | 77 | 0.8546 | - |
|
418 |
+
| 0.9873 | 78 | 0.7313 | - |
|
419 |
+
| 1.0 | 79 | 0.6568 | 0.802 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
|
|
|
421 |
|
422 |
### Framework Versions
|
423 |
+
- Python: 3.12.3
|
424 |
+
- Sentence Transformers: 3.3.1
|
425 |
+
- Transformers: 4.48.0.dev0
|
426 |
+
- PyTorch: 2.5.1
|
427 |
+
- Accelerate: 1.2.1
|
428 |
- Datasets: 2.19.0
|
429 |
+
- Tokenizers: 0.21.0
|
430 |
|
431 |
## Citation
|
432 |
|
config.json
CHANGED
@@ -21,7 +21,7 @@
|
|
21 |
"pad_token_id": 1,
|
22 |
"position_embedding_type": "absolute",
|
23 |
"torch_dtype": "float32",
|
24 |
-
"transformers_version": "4.
|
25 |
"type_vocab_size": 1,
|
26 |
"use_cache": true,
|
27 |
"vocab_size": 250002
|
|
|
21 |
"pad_token_id": 1,
|
22 |
"position_embedding_type": "absolute",
|
23 |
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.48.0.dev0",
|
25 |
"type_vocab_size": 1,
|
26 |
"use_cache": true,
|
27 |
"vocab_size": 250002
|
config_sentence_transformers.json
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
-
"sentence_transformers": "3.
|
4 |
-
"transformers": "4.
|
5 |
-
"pytorch": "2.5.
|
6 |
},
|
7 |
"prompts": {
|
8 |
"query": "query: "
|
9 |
},
|
10 |
"default_prompt_name": null,
|
11 |
-
"similarity_fn_name":
|
12 |
}
|
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.48.0.dev0",
|
5 |
+
"pytorch": "2.5.1"
|
6 |
},
|
7 |
"prompts": {
|
8 |
"query": "query: "
|
9 |
},
|
10 |
"default_prompt_name": null,
|
11 |
+
"similarity_fn_name": "cosine"
|
12 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2271064456
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c2654e18c5b8eae32ae1f04ad1ad6d8be0be94000f327c1fb8bd9c89763dfd9
|
3 |
size 2271064456
|
tokenizer_config.json
CHANGED
@@ -45,6 +45,7 @@
|
|
45 |
"clean_up_tokenization_spaces": true,
|
46 |
"cls_token": "<s>",
|
47 |
"eos_token": "</s>",
|
|
|
48 |
"mask_token": "<mask>",
|
49 |
"max_length": 512,
|
50 |
"model_max_length": 8192,
|
|
|
45 |
"clean_up_tokenization_spaces": true,
|
46 |
"cls_token": "<s>",
|
47 |
"eos_token": "</s>",
|
48 |
+
"extra_special_tokens": {},
|
49 |
"mask_token": "<mask>",
|
50 |
"max_length": 512,
|
51 |
"model_max_length": 8192,
|